Berrueta Irigoyen, Alberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Berrueta Irigoyen

First Name

Alberto

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Influence of the aging model of lithium-ion batteries on the management of PV self-consumption systems
    (IEEE, 2018) Berrueta Irigoyen, Alberto; Pascual Miqueleiz, Julio María; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI038 INTEGRA-RENOVABLES
    Lithium-ion batteries are gaining importance for a variety of applications due to their improving characteristics and decreasing price. An accurate knowledge of their aging is required for a successful use of these ESSs. The vast number of models that has been proposed to predict these phenomena raise doubts about the suitability of a model for a particular battery application. The performance of three models published for a Sanyo 18650 cylindrical cell in a self-consumption system are compared in this work. Measured photovoltaic production and home consumption with a sampling frequency of 15 minutes are used for this comparison. The different aging predictions calculated by these three models are analyzed, compared and discussed. These comparison is particularized for two management strategies. The first of them maximizes the self-consumption PV energy, while the second reduces the maximum power peak demanded from the grid.
  • PublicationOpen Access
    Parameter-independent control for battery chargers based on virtual impedance emulation
    (IEEE, 2018) Urtasun Erburu, Andoni; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    An effective battery voltage regulation is fundamental to extend battery lifetime and to avoid overvoltage. However, the design of this regulation is complicated due to the wide battery impedance range, which, when dealing with universal chargers, is dependent not only on the operating point but also on the battery type and size. This paper first shows how the voltage response becomes highly variable when designing the controller as described in the literature. Then, it proposes to emulate virtual impedance in parallel with the battery, making it possible to achieve a voltage control which is independent of battery characteristics. Experimental results are carried out for a new lithium-ion battery with 25 mΩ-impedance and an overused lead-acid battery with 400 mΩ-impedance. For this large impedance variation, the results evidence the problems of the conventional control and validate the superior performance of the proposed control.