Casalí Sarasíbar, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Casalí Sarasíbar
First Name
Javier
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
30 results
Search Results
Now showing 1 - 10 of 30
Publication Open Access Model prediction capacity of ephemeral gully evolution in conservation tillage systems(Wiley, 2021) Luquin Oroz, Eduardo Adrián; Campo-Bescós, Miguel; Muñoz Carpena, Rafael; Bingner, R.L.; Cruse, Richard M.; Momm, Henrique G.; Wells, R.; Casalí Sarasíbar, Javier; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaEphemeral gully (EG) erosion has an important impact on agricultural soil losses and increases field surface hydrology connectivity and transport of pollutants to nearby water bodies. Watershed models including an EG component are scarce and not yet properly evaluated. The objective of this study is to evaluate the capacity of one such tool, AnnAGNPS, to simulate the evolution of two EG formed in a conservation tillage system. The dataset for model testing included runoff measurements and EG morphological characteristics during 3 years. Model evaluation focused on EG evolution of volume, width, and length model outputs, and included calibration and testing phases and a global sensitivity analysis (GSA). While the model did not fully reproduce width and length, the model efficiency to simulate EG volume was satisfactory for both calibration and testing phases, supporting the watershed management objectives of the model. GSA revealed that the most sensitive factors were EG depth, critical shear stress, headcut detachment exponent coefficient b, and headcut detachment leading coefficient a. For EG outputs the model was additive, showing low sensitivity to interactions between the inputs. Prediction of EG spatial evolution on conservation tillage systems requires improved development of gullyerosion components, since many of the processes were developed originally for traditional tillage practices or larger channel systems. Our results identify the need for future research when EG form within conservation tillage systems, in particular to study gully headcut, soil erodibility, and width functions specific to these practices.Publication Open Access EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water(Nature Research, 2023-08-04) Matthews, Francis; Verstraeten, Gert; Borrelli, Pasquale; Vanmaercke, Matthias; Poesen, J.; Steegen, An; Degré, Aurore; Cárceles Rodríguez, Belén; Bielders, Charles; Franke, Christine; Alary, Claire; Zumr, David; Patault, Edouard; Nadal-Romero, Estela; Smolska, Ewa; Licciardello, Feliciana; Swerts, Gilles; Thodsen, Hans; Casalí Sarasíbar, Javier; Eslava, Javier; Richet, Jean-Baptiste; Ouvry, Jean-François; Farguell, Joaquim; Święchowicz, Jolanta; Nunes, João Pedro; Pak, Lai Ting; Liakos, Leonidas ; Campo-Bescós, Miguel; Żelazny, Mirosław; Delaporte, Morgan; Pineux, Nathalie; Henin, Nathan; Bezak, Nejc; Lana Renault, Noemí ; Tzoraki, Ourania; Giménez Díaz, Rafael; Li, Tailin; Durán Zuazo, Víctor Hugo; Bagarello, Vincenzo; Pampalone, Vincenzo; Ferro, Vito; Úbeda, Xavier; Panagos, Panos; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODAs a network of researchers we release an open-access database (EUSEDcollab) of water discharge and suspended sediment yield time series records collected in small to medium sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of openaccess data at relevant spatial scales for studies on runoff, soil loss by water erosion and sediment delivery. Multi-source measurement data from numerous researchers and institutions were harmonised into a common time series and metadata structure. Data reuse is facilitated through accompanying metadata descriptors providing background technical information for each monitoring station setup. Across ten European countries, EUSEDcollab covers over 1600 catchment years of data from 245 catchments at event (11 catchments), daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in its focus on small to medium catchment drainage areas (median = 43 km2, min = 0.04 km2, max = 817 km2) with applicability for soil erosion research. We release this database with the aim of uniting people, knowledge and data through the European Union Soil Observatory (EUSO).Publication Open Access Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models(Universidad de la Rioja, 2017) Masselink, Rens Hein; Temme, A.J.A.M.; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Keesstra, Saskia D.; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOODSoil erosion from agricultural areas is a large problem because of off-site effects like the rapid filling of reservoirs. To mitigate the problem of sediments from agricultural areas reaching the channel, reservoirs and other surface areas it is important to understand hillslope-channel connectivity and catchment connectivity. To determine the functioning of hillslope-channel connectivity and the continuation of transport of these sediments in the channel, it is necessary to obtain data on sediment transport from the hillslopes to the channels. Simultaneously, the factors that influence sediment export out of the catchment need to be studied. For measuring hillslope-channel sediment connectivity, rare-earth oxide (REO) tracers were applied to a hillslope in an agricultural catchment in Navarre, Spain, preceding the winter of 2014-2015. The results showed that during the winter no sediment transport from the hillslope to the channel was detected. To test the implication of the REO results at the catchment scale, two contrasting conceptual models for sediment connectivity were assessed using a random forest (RF) machine learning method. The RF method was applied using a 15-year period of measured sediment output at the catchment scale. One model proposes that small events provide sediment for large events, while the other proposes that only large events cause sediment detachment and small events subsequently remove these sediments from near and in the channel. For sediment yield prediction of small events, variables related to large preceding events were the most important. The model for large events underperformed and, therefore, we could not draw any immediate conclusions whether small events influence the amount of sediment exported during large events. Both REO tracers and RF method showed that low intensity events do not contribute any sediments from the hillslopes to the channel in Latxaga catchment. Sediment dynamics are dominated by sediment mobilization during large (high intensity) events. Sediments are for a large part exported during those events, but the system shows a memory of the occurrence of these large events, suggesting that large amounts of sediments are deposited in and near the channel after these events. These sediments are gradually removed by small events. To better understand the delivery if sediments to the channel and how large and small events influence each other, more field data on hillslope-channel connectivity and within-channel sediment dynamics is necessary.Publication Open Access Coupling hysteresis analysis with sediment and hydrological connectivity in three agricultural catchments in Navarre, Spain(Springer Verlag, 2019) Keesstra, Saskia D.; Davis, Jason; Masselink, Rens Hein; Casalí Sarasíbar, Javier; Peeters, Edwin T.H.M.; Dijksma, Roel; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakPurpose: Rain storm events mobilise large proportions of fine sediments in catchment systems. Sediments from agriculturalcatchments are often adsorbed by nutrients, heavy metals and other (in)organic pollutants that may impact downstream envi-ronments. To mitigate erosion, sediment transport and associated pollutant transport, it is crucial to know the origin of thesediment that is found in the drainage system, and therefore, it is important to understand catchment sediment dynamicsthroughout the continuity of runoff events. Materials and methods:To assess the impact of the state of a catchment on the transport of fine suspended sediment to catchmentoutlets, an algorithm has been developed which classifies rain storm events into simple (clockwise, counter-clockwise) andcompound (figure-of-eight; complex) events. This algorithm is the first tool that uses all available discharge and suspendedsediment data and analyses these data automatically. A total of 797 runoff events from three experimental watersheds in Navarre(Spain) were analysed with the help of long-term, high-resolution discharge and sediment data that was collected between 2000 and 2014. Results and discussion: Morphological complexity and in-stream vegetation structures acted as disconnecting landscape featureswhich caused storage of sediment along the transport cascade. The occurrence of sediment storage along transport paths wastherefore responsible for clockwise hysteresis due to the availability of in-stream sediment which could cause theBfirst flush^affect. Conversely, the catchment with steeper channel gradients and a lower stream density showed much more counter-clockwise hysteresis due to better downstream and lateral surface hydrological connectivity. In this research, hydrologicalconnectivity is defined as the actual and potential transfer paths in a catchment. The classification of event SSC-Q hysteresisprovided a seasonal benchmark value to which catchment managers can compare runoff events in order to understand the originand locations of suspended sediment in the catchment. Conclusions: A new algorithm uses all available discharge and suspended sediment data to assess catchment sediment dynamics.From these analyses, the catchment connectivity can be assessed which is useful to develop catchment land management.Publication Open Access Factors controlling sediment export in a small agricultural watershed in Navarre (Spain)(Elsevier, 2012) Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Grande Esteban, Ildefonso; Díez Beregaña, Javier; Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; Goñi Garatea, Mikel; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gestión de Empresas; Enpresen Kudeaketa; Gobierno de Navarra / Nafarroako GobernuaIt is recognised that the hydrological and erosion processes in watersheds are very much conditioned by the (inter)action of a number of variables. This paper covers a 15-year period of studying those factors that have a major influence on the sediment yield and transport during individual hydrological events in a small Mediterranean agricultural watershed. Multivariate statistical techniques such as cluster analysis and principal component analysis were applied for the interpretation of datasets. In addition, the relationships between suspended sediment concentration and discharge (hysteretic loops) were also analysed. The hydrological response of the studied watershed is mainly controlled by the antecedent condition of the flow. Most of the runoff and sediment are generated during the wet season when vegetation cover is scant and saturation overland flow occurs promptly as a response to almost any rainfall events. In contrast, during the dry seasons even if high-intensity rainfalls normally occur, very scant runoffs are, however recorded, at the exit of the watershed. Most of the eroded sediment seems to come from riparian areas. The discharge registered at the watershed outlet up to 1 h prior to the flood is a very good surrogate for antecedent soil moisture.Publication Open Access Challenges and progresses in the detailed estimation of sediment export in agricultural watersheds in Navarra (Spain) after two decades of experience(Elsevier, 2023) Barberena Ruiz, Íñigo; Luquin Oroz, Eduardo Adrián; Campo-Bescós, Miguel; Eslava, Javier; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODSoil erosion is a very serious environmental problem worldwide, with agriculture considered the main source of sediment in inland waters. In order to determine the extent and importance of soil erosion in the Spanish region of Navarra, in 1995 the Government of Navarra established the Network of Experimental Agricultural Watersheds (NEAWGN), which consists of five small watersheds representative of local conditions. In each watershed, key hydrometeorological variables, including turbidity, were recorded every 10 min, and daily samples were taken to determine suspended sediment concentration. In 2006, the frequency of suspended sediment sampling was increased during hydrologically relevant events. The main objective of this study is to explore the possibility of obtaining long and accurate time series of suspended sediment concentration in the NEAWGN. To this end, simple linear regressions between sediment concentration and turbidity are proposed. In addition, supervised learning models incorporating a larger number of predictive variables are used for the same purpose. A series of indicators are proposed to objectively characterize the intensity and timing of sampling. It was not possible to obtain a satisfactory model for estimating the concentration of suspended sediment. This would be mainly due to the large temporal variability found of the physical and mineralogical characteristics of the sediment, which would be affecting the turbidity value, independently of the sediment concentration, per se. This fact would be particularly important in small river watersheds such as those of this study, and especially if their physical conditions are spatially and temporally radically disturbed by agricultural tillage and by a constant modification of the vegetation cover, as is the case in cereal basins. Our findings suggest that better results could be obtained by including in the analysis variables such as soil texture and exported sediment texture, rainfall erosivity, and the state of vegetation cover and riparian vegetation.Publication Open Access Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)(Elsevier, 2018) Merchán Elena, Daniel; Casalí Sarasíbar, Javier; Valle de Lersundi, Jokin del; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Preciado, Beatriz; Lafarga, Alberto; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería RuralThe environmental impact of irrigated agriculture on water quality was assessed in Landazuria watershed (Navarre, northeast Spain), a 479.5 ha watershed with 53% of irrigated agricultural land. In the framework of a long-term monitoring program, precipitation and discharge were measured at 10-min intervals and compound daily water samples were collected during the agricultural years (September to August) 2007–2016, and analysed for nitrate (NO3−), phosphate (PO43−), sediment and total dissolved solids (TDS) concentrations. Typical agricultural management (including crop surfaces, irrigation and fertilization rates) was obtained from inquiries to farmers. Concentration and yield of the studied variables presented a high degree of variation, both intra- and inter-annual. Median concentration for the entire study period were 185, <0.05, 31 and 2284 mg L−1 for NO3−, PO43−, sediment and TDS, respectively. NO3−-N and PO43−-P yields averaged 74 and 0.04 kg ha−1 year−1, respectively. NO3 −-N yield was higher than in other agricultural land uses in Navarre and in the order of magnitude of other irrigated areas in the Middle Ebro Valley. PO43−-P yield was in the same order of magnitude than in rainfed watersheds in Navarre but lower than in intensively grazed watersheds. Sediment yield was extremely variable, averaging 360 kg ha−1 year−1, with 44% of the total measured load recorded in a few days. It was in the lower range of those measured in Navarre for rainfed agriculture and similar to those estimated in other irrigated areas of the Middle Ebro River. TDS concentration presented a significant decreasing trend since available salts were being washed out, while TDS yield averaged 1.8 Mg ha−1 year−1. Long-term monitoring of irrigated areas is required to understand pollution processes in these agroecosystems and to adequately characterize the environmental impact of current agricultural practices on water quality, in order to implement, and adequately assess, measures to reduce agricultural pollution.Publication Open Access Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin(MDPI, 2020) Peña-Angulo, Dahis; Nadal-Romero, Estela; Campo-Bescós, Miguel; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; IngenieríaRainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Publication Open Access Evaluación de la producción de sedimentos y calidad de las aguas en cuencas agrarias de Navarra(Universidad de La Rioja, 2012) Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Díez Beregaña, Javier; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gobierno de Navarra / Nafarroako GobernuaThe Government of Navarre (Spain) established a series of experimental watersheds on different sites of its territory in order to assess the impact of the agricultural activities on the environment. Hydrological/meteorological and water quality data are continuously monitored. In this paper, data recorded –precipitation, runoff, sediment, nitrate and phosphate– in two grain-sown watersheds (La Tejería and Latxaga) and in a third one (Oskotz) covered with forest and pasture (cattle-breeding) with a sub-watershed almost entirely under forest, are analyzed; the information covers a period of ca. 15 years. The inter/intra annual variability of the involved processes are studied as well as their impact on the water quality and on the ecosystem. The majority of the sediments yielded in the watersheds are registered during winter, though most of the erosive rainfalls occurred in summer. This is because of the easy-prone runoff that prevailed during winter due to the (much) higher water content of the soils in this period. The grain-sown watersheds –roughly similar at first view– present however important differences regarding sediment yield: 1800 kg/ha year at La Tejería and only 450 kg/ha year at Latxaga. This could be mainly due to differences in morphology, topography, and amount of stream channel vegetation between both sites. At Oskotz this figures are as a whole lower than those registered in the cultivated watersheds but eventually larger than those at Latxaga; this depending on the forest management (logging). Water quality is seriously affected at La Tejería with nitrate concentration constantly over critical threshold. By contrast, nitrate values are much lower in Latxaga watershed. However, phosphate concentrations were similar in both grain-sown watersheds corresponding to water with a significant risk of eutrophication. The cattle-breeding activity at Oskotz generated unexpected levels of phosphate much higher than those registered in the cultivated wathersheds.Publication Open Access Evaluation of the impact of changing from rainfed to irrigated agriculture in a mediterranean watershed in Spain(MDPI, 2023) Oduor, Brian Omondi; Campo-Bescós, Miguel; Lana Renault, Noemí; Alfaro Echarri, Alberto; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODThe conversion of cultivated areas from rainfed to irrigated agriculture alters the watershed’s hydrology and could affect the water quality and quantity. This study examined how streamflow, nitrate load, and nitrate concentration changed after irrigation implementation in a Mediterranean watershed in Navarre, Spain. The Soil Water Assessment Tool (SWAT) model was applied in the Cidacos River watershed to simulate streamflow and nitrate load under rainfed conditions. The simulated outputs were then compared with the post-irrigation observed values from mid-2017 to 2020 at the watershed outlet in Traibuenas to determine the irrigation impact. The model calibration (2000–2010) and validation (2011–2020) results for streamflow (NSE = 0.82/0.83) and nitrate load (NSE = 0.71/0.68) were satisfactory, indicating the model’s suitability for use in the watershed. A comparison of the rainfed and post-irrigation periods showed an average annual increase in streamflow (952.33 m3 ha−1, +18.8%), nitrate load (68.17 kg ha−1, +62.3%), and nitrate concentration (0.89 mg L−1 ha−1, +79%) at the watershed outlet. Irrigation also caused seasonal changes by altering the cropping cycle and increasing the streamflow and nitrate export during the summer and autumn when irrigation was at its peak. The increases in the post-irrigation period were attributed to the added irrigation water for streamflow and increased nitrogen fertilizer application due to changes in cropping for nitrate concentration and export. These findings are useful to farmers and managers in deciding the best nitrate pollution control and management measures to implement. Furthermore, these results could guide future development and expansion of irrigated lands to improve agricultural sustainability.
- «
- 1 (current)
- 2
- 3
- »