Publication:
Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)

Date

2018

Authors

Valle de Lersundi, Jokin del
Preciado, Beatriz
Lafarga, Alberto

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

MINECO//CGL2015-64284-C2-1-R/ES/recolecta
Métricas Alternativas
OpenAlexGoogle Scholar
cited by count

Abstract

The environmental impact of irrigated agriculture on water quality was assessed in Landazuria watershed (Navarre, northeast Spain), a 479.5 ha watershed with 53% of irrigated agricultural land. In the framework of a long-term monitoring program, precipitation and discharge were measured at 10-min intervals and compound daily water samples were collected during the agricultural years (September to August) 2007–2016, and analysed for nitrate (NO3−), phosphate (PO43−), sediment and total dissolved solids (TDS) concentrations. Typical agricultural management (including crop surfaces, irrigation and fertilization rates) was obtained from inquiries to farmers. Concentration and yield of the studied variables presented a high degree of variation, both intra- and inter-annual. Median concentration for the entire study period were 185, <0.05, 31 and 2284 mg L−1 for NO3−, PO43−, sediment and TDS, respectively. NO3−-N and PO43−-P yields averaged 74 and 0.04 kg ha−1 year−1, respectively. NO3 −-N yield was higher than in other agricultural land uses in Navarre and in the order of magnitude of other irrigated areas in the Middle Ebro Valley. PO43−-P yield was in the same order of magnitude than in rainfed watersheds in Navarre but lower than in intensively grazed watersheds. Sediment yield was extremely variable, averaging 360 kg ha−1 year−1, with 44% of the total measured load recorded in a few days. It was in the lower range of those measured in Navarre for rainfed agriculture and similar to those estimated in other irrigated areas of the Middle Ebro River. TDS concentration presented a significant decreasing trend since available salts were being washed out, while TDS yield averaged 1.8 Mg ha−1 year−1. Long-term monitoring of irrigated areas is required to understand pollution processes in these agroecosystems and to adequately characterize the environmental impact of current agricultural practices on water quality, in order to implement, and adequately assess, measures to reduce agricultural pollution.

Description

Keywords

Watershed, Agricultural pollution, Nitrate, Phosphate, Soil loss, TDS

Department

Landa Ingeniaritza eta Proiektuak / Institute on Innovation and Sustainable Development in Food Chain - ISFOOD / Proyectos e Ingeniería Rural

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2017 Elsevier B.V. The manuscript version is made available under the CC BY-NC-ND 4.0 license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.