López García, José Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López García
First Name
José Luis
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
26 results
Search Results
Now showing 1 - 10 of 26
Publication Open Access Uniform representation of the incomplete beta function in terms of elementary functions(Kent State University, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e InformáticaWe consider the incomplete beta function Bz(a, b) in the maximum domain of analyticity of its three variables: a, b, z ∈ C, −a /∈ N, z /∈ [1, ∞). For 0. The expansions are accompanied by realistic error bounds. Some numerical experiments show the accuracy of the approximations.Publication Open Access Orthogonal basis with a conicoid first mode for shape specification of optical surfaces: reply(Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Navarro, Rafael; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaWe present some comments to the paper 'Orthogonal basis with a conicoid first mode for shape specification of optical surfaces: comment'.Publication Open Access Orthogonal basis with a conicoid first mode for shape specification of optical surfaces(Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Navarro, Rafael; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaA rigorous and powerful theoretical framework is proposed to obtain systems of orthogonal functions (or shape modes) to represent optical surfaces. The method is general so it can be applied to different initial shapes and different polynomials. Here we present results for surfaces with circular apertures when the first basis function (mode) is a conicoid. The system for aspheres with rotational symmetry is obtained applying an appropriate change of variables to Legendre polynomials, whereas the system for general freeform case is obtained applying a similar procedure to spherical harmonics. Numerical comparisons with standard systems, such as Forbes and Zernike polynomials, are performed and discussed.Publication Open Access The Pearcey integral in the highly oscillatory region(Elsevier, 2016) López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the Pearcey integral P(x, y) for large values of |y| and bounded values of |x|. The integrand of the Pearcey integral oscillates wildly in this region and the asymptotic saddle point analysis is complicated. Then we consider here the modified saddle point method introduced in [Lopez, Pérez and Pagola, 2009] [4]. With this method, the analysis is simpler and it is possible to derive a complete asymptotic expansion of P(x, y) for large |y|. The asymptotic analysis requires the study of three different regions for separately. In the three regions, the expansion is given in terms of inverse powers of y2/3 and the coefficients are elementary functions of x. The accuracy of the approximation is illustrated with some numerical experiments.Publication Open Access An extension of the multiple Erdélyi-Kober operator and representations of the generalized hypergeometric functions(De Gruyter, 2018) Karp, D. B.; López García, José Luis; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this paper we investigate the extension of the multiple Erd elyi-Kober fractional integral operator of Kiryakova to arbitrary complex values of parameters by the way of regularization. The regularization involves derivatives of the function in question and the integration with respect to a kernel expressed in terms of special case of Meijer's G function. An action of the regularized multiple Erd elyi-Kober operator on some simple kernels leads to decomposition formulas for the generalized hypergeometric functions. In the ultimate section, we de ne an alternative regularization better suited for representing the Bessel type generalized hypergeometric function p1Fp. A particular case of this regularization is then used to identify some new facts about the positivity and reality of zeros of this function.Publication Open Access A simplification of the stationary phase method: application to the Anger and Weber functions(Kent State University, 2017) López García, José Luis; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe main difficulty in the practical use of the stationary phase method in asymptotic expansions of integrals is originated by a change of variables. The coefficients of the asymptotic expansion are the coefficients of the Taylor expansion of a certain function implicitly defined by that change of variables. In general, this function is not explicitly known, and then the computation of those coefficients is cumbersome. Using the factorization of the exponential factor used in previous works of [Tricomi, 1950], [Erdélyi and Wyman, 1963], and [Dingle, 1973], we obtain a variant of the method that avoids that change of variables and simplifies the computations. On the one hand, the calculation of the coefficients of the asymptotic expansion is remarkably simpler and explicit. On the other hand, the asymptotic sequence is as simple as in the standard stationary phase method: inverse powers of the asymptotic variable. New asymptotic expansions of the Anger and Weber functions Jλx(x) and Eλx(x) for large positive x and real parameter λ 6= 0 are given as an illustration.Publication Open Access Convergent expansions of the incomplete gamma functions in terms of elementary functions(World Scientific Publishing, 2017) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the incomplete gamma function γ(a,z) for Ra>0 and z∈C. We derive several convergent expansions of z−aγ(a,z) in terms of exponentials and rational functions of z that hold uniformly in z with Rz bounded from below. These expansions, multiplied by ez, are expansions of ezz−aγ(a,z) uniformly convergent in z with Rz bounded from above. The expansions are accompanied by realistic error bounds.Publication Open Access Analytic formulas for the evaluation of the Pearcey integral(American Mathematical Society, 2017) López García, José Luis; Pagola Martínez, Pedro Jesús; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe can find in the literature several convergent and/or asymptotic expansions of the Pearcey integral P(x, y) in different regions of the complex variables x and y, but they do not cover the whole complex x and y planes. The purpose of this paper is to complete this analysis giving new convergent and/or asymptotic expansions that, together with the known ones, cover the evaluation of the Pearcey integral in a large region of the complex x and y planes. The accuracy of the approximations derived in this paper is illustrated with some numerical experiments. Moreover, the expansions derived here are simpler compared with other known expansions, as they are derived from a simple manipulation of the integral definition of P(x, y).Publication Open Access Generalization of Zernike polynomials for regular portions of circles and ellipses(Optical Society of America, 2014) Navarro, Rafael; López García, José Luis; Díaz, José A.; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaZernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit circle. Here, we present a generalization of this Zernike basis for a variety of important optical apertures. On the contrary to ad hoc solutions, most of them based on the Gram-Schmidt orthonormalization method, here we apply the diffeomorphism (mapping that has a differentiable inverse mapping) that transforms the unit circle into an angular sector of an elliptical annulus. In this way, other apertures, such as ellipses, rings, angular sectors, etc. are also included as particular cases. This generalization, based on in-plane warping of the basis functions, provides a unique solution and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both, the general form and the explicit expressions for most common, elliptical and annular apertures are provided.Publication Open Access The use of two-point Taylor expansions in singular one-dimensional boundary value problems I(Elsevier, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e InformáticaWe consider the second-order linear differential equation (x + 1)y′′ + f(x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet-Neumann). The functions f(x), g(x) and h(x) are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then, the end point of the interval x = −1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they exist.
- «
- 1 (current)
- 2
- 3
- »