Publication:
Uniform representation of the incomplete beta function in terms of elementary functions

Date

2018

Director

Publisher

Kent State University
Johann Radon Institute (RICAM)
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/recolecta
Métricas Alternativas

Abstract

We consider the incomplete beta function Bz(a, b) in the maximum domain of analyticity of its three variables: a, b, z ∈ C, −a /∈ N, z /∈ [1, ∞). For <b ≤ 1 we derive a convergent expansion of z−aBz(a, b) in terms of the function (1 − z) b and of rational functions of z that is uniformly valid for z in any compact set in C \ [1, ∞). When −b ∈ N ∪ {0}, the expansion also contains a logarithmic term of the form log(1 − z). For <b ≥ 1 we derive a convergent expansion of z−a(1 − z) bBz(a, b) in terms of the function (1 − z) b and of rational functions of z that is uniformly valid for z in any compact set in the exterior of the circle |z − 1| = r for arbitrary r > 0. The expansions are accompanied by realistic error bounds. Some numerical experiments show the accuracy of the approximations.

Description

Keywords

Incomplete beta function, Convergent expansions, Uniform expansions

Department

Matematika eta Informatika Ingeniaritza / Institute for Advanced Materials and Mathematics - INAMAT2 / Ingeniería Matemática e Informática

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2018 Kent State University

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.