Person:
López García, José Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López García

First Name

José Luis

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-6050-9015

person.page.upna

2369

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Formulas for the amplitude of the van der Pol limit cycle through the homotopy analysis method
    (Hindawi / Wiley, 2009) López García, José Luis; Abbasbandy, S.; López Ruiz, R.; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua, Res. 07/05/2008
    The limit cycle of the van der Pol oscillator, x¨+ε(x2−1)x˙+x=0, is studied in the plane (x,x˙) by applying the homotopy analysis method. A recursive set of formulas that approximate the amplitude and form of this limit cycle for the whole range of the parameter ε is obtained. These formulas generate the amplitude with an error less than 0.1%. To our knowledge, this is the first time where an analytical approximation of the amplitude of the van der Pol limit cycle, with validity from the weakly up to the strongly nonlinear regime, is given.
  • PublicationOpen Access
    Convergent asymptotic expansions of Charlier, Laguerre and Jacobi polynomials
    (Cambridge University Press, 2004) López García, José Luis; Temme, Nico M.; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    Convergent expansions are derived for three types of orthogonal polynomials: Charlier, Laguerre and Jacobi. The expansions have asymptotic properties for large values of the degree. The expansions are given in terms of functions that are special cases of the given polynomials. The method is based on expanding integrals in one or two points of the complex plane, these points being saddle points of the phase functions of the integrands.