Publication: Convergent asymptotic expansions of Charlier, Laguerre and Jacobi polynomials
Consultable a partir de
Date
2004
Authors
Temme, Nico M.
Director
Publisher
Cambridge University Press
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa
Project identifier
Abstract
Convergent expansions are derived for three types of orthogonal polynomials: Charlier, Laguerre and Jacobi. The expansions have asymptotic properties for large values of the degree. The expansions are given in terms of functions that are special cases of the given polynomials. The method is based on expanding integrals in one or two points of the complex plane, these points being saddle points of the phase functions of the integrands.
Keywords
Charlier polynomials, Laguerre polynomials, Jacobi polynomials, Convergent expansions
Department
Ingeniería Matemática e Informática / Matematika eta Informatika Ingeniaritza
Faculty/School
Degree
Doctorate program
Editor version
Funding entities
J.L.L. thanks the CWI of Amsterdam for its scientific and financial support
during the realization of this work. The financial support of the savings bank, Caja
Rural de Navarra, is also acknowledged.
© 2004 The Royal Society of Edinburgh
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.