Marino Bilbao, Daniel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Marino Bilbao

First Name

Daniel

person.page.departamento

Ciencias del Medio Natural

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress
    (The American Phytopathological Society, 2011-09-07) Asensio, Aarón C.; Marino Bilbao, Daniel; James, Euan K.; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; Aparicio Tejo, Pedro María; Arredondo-Peter, Raúl; Morán Juez, José Fernando; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Two phylogenetically unrelated superoxide dismutase (SOD) families, i.e., CuZnSOD (copper and zinc SOD) and FeMn-CamSOD (iron, manganese, or cambialistic SOD), eliminate superoxide radicals in different locations within the plant cell. CuZnSOD are located within the cytosol and plastids, while the second family of SOD, which are considered to be of bacterial origin, are usually located within organelles, such as mitochondria. We have used the reactive oxygen species¿producer methylviologen (MV) to study SOD isozymes in the indeterminate nodules on pea (Pisum sativum). MV caused severe effects on nodule physiology and structure and also resulted in an increase in SOD activity. Purification and N-terminal analysis identified CamSOD from the Rhizobium leguminosarum endosymbiont as one of the most active SOD in response to the oxidative stress. Fractionation of cell extracts and immunogold labeling confirmed that the CamSOD was present in both the bacteroids and the cytosol (including the nuclei, plastids, and mitochondria) of the N-fixing cells, and also within the uninfected cortical and interstitial cells. These findings, together with previous reports of the occurrence of FeSOD in determinate nodules, indicate that FeMnCamSOD have specific functions in legumes, some of which may be related to signaling between plant and bacterial symbionts, but the occurrence of one or more particular isozymes depends upon the nodule type.
  • PublicationOpen Access
    Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea
    (Oxford University Press, 2016) Marino Bilbao, Daniel; Ariz Arnedo, Idoia; Lasa Larrea, Berta; Santamaría Martínez, Enrique; Aparicio Tejo, Pedro María; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants’ nutritional value.