Publication:
Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea

Consultable a partir de

Date

2016

Director

Publisher

Oxford University Press
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

MINECO//AGL2015-64582-C3-1-R/ES/
MINECO//BIO2014-56271-R/ES/
European Commission/FP7/334019openaire

Abstract

Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants’ nutritional value.

Keywords

Ammonium, Arabidopsis thaliana, Broccoli, Glucosinolates, Myrosinase, Nitrate, Nitrogen nutrition, Proteomics

Department

Ciencias del Medio Natural / Natura Ingurunearen Zientziak

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This research was financially supported by the Basque Government (IT932-16), the Spanish Ministry of Economy and Competitiveness (AGL2015-64582-C3-1-R and BIO2014-56271-R co-funded by FEDER), and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement number 334019. Navarrabiomed Proteomics Unit is a member of ProteoRed, PRB2-ISCIII, and is supported by grant PT13/0001, of the PE I+D+I 2013-2016 funded by ISCIII and FEDER.

© The Author 2016. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.