Blanco Vaca, Juan Antonio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Blanco Vaca

First Name

Juan Antonio

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 68
  • PublicationOpen Access
    Soil organic matter: a sustainability indicator for wildfire control and bioenergy production in the urban/forest interface.
    (The Soil Science Society of America, Inc., 2014) Blanco Vaca, Juan Antonio; Dubois, David; Littlejohn, Dale; Flanders, David N.; Robinson, Peter; Moshofsky, Molly; Welham, Clive; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Many rural communities in British Columbia (western Canada) are increasingly at risk from wildfire as temperatures rise and droughts become more frequent. In addition, these communities are also faced with rising fuel costs, and a growing demand for heat as their populations increase. The fact these communities are surrounded by forests presents an opportunity to combine community wildfire risk abatement with bioenergy development. Here we show how the ecological model FORECAST was linked with GIS and economic models to create a freely available on-line tool (FIRST Heat) to help other communities make their own screening-level ecological assessments of combining wildfire risk control with district heating systems. The tool incorporates an ecological sustainability index based on the relative change in soil organic matter (SOM) after 50 years of management compared to initial levels. Two thresholds were defined: 10% SOM lost as “warning” level, and 20% SOM lost as “critical” level. The tool was able to adequately capture the influences of ecological zone, stand age, site quality, and intensity of forest management on SOM losses. Stands in the sub-boreal and arid interior were significantly more exposed to SOM losses than in other ecological zones, as well as soils in old-growth forests. Stands in poor sites were significantly more sensitive to forest management than young and fertile sites. All things considered, our results show the suitability of incorporating ecological models and SOM thresholds in user-friendly decision-support tools to successfully transfer scientific knowledge on forest soils to local stakeholders and decision makers.
  • PublicationOpen Access
    5ª Edición de la Escuela de Verano de Ecología de la UPNA (2019)
    (Asociación Española de Ecología Terrestre (AEET), 2019) Blanco Vaca, Juan Antonio; Ciencias; Zientziak
    Noticia de la celebración de la quinta edición de la Escuela de Verano de Ecología de la Universidad Pública de Navarra (UPNA), del 26 al 28 de junio de 2019, en el Museo de Educación Ambiental del Ayuntamiento de Pamplona (Navarra), bajo el título 'Usando la biomasa forestal como fuente de energía renovable'.
  • PublicationOpen Access
    Managing forests for both downstream and downwind water
    (Frontiers Media, 2019) Creed, Irena F.; Jones, Julia A.; Archer, Emma; Claassen, Marius; Blanco Vaca, Juan Antonio; Ciencias; Zientziak
    Forests and trees are key to solving water availability problems in the face of climate change and to achieving the United Nations Sustainable Development Goals. A recent global assessment of forest and water science posed the question: How do forests matter for water? Here we synthesize science from that assessment, which shows that forests and water are an integrated system. We assert that forests, from the tops of their canopies to the base of the soils in which trees are rooted, must be considered a key component in the complex temporal and spatial dimensions of the hydrologic cycle. While it is clear that forests influence both downstream and downwind water availability, their actual impact depends on where they are located and their processes affected by natural and anthropogenic conditions. A holistic approach is needed to manage the connections between forests, water and people in the face of current governance systems that often ignore these connections. We need policy interventions that will lead to forestation strategies that decrease the dangerous rate of loss in forest cover and that-where appropriate-increase the gain in forest cover. We need collective interventions that will integrate transboundary forest and water management to ensure sustainability of water supplies at local, national and continental scales. The United Nations should continue to show leadership by providing forums in which interventions can be discussed, negotiated and monitored, and national governments must collaborate to sustainably manage forests to ensure secure water supplies and equitable and sustainable outcomes.
  • PublicationOpen Access
    Significant increase in ecosystem C can be achieved with sustainable forest management in subtropical plantation forests
    (Public Library of Science, 2014) Wei, Xiaohua; Blanco Vaca, Juan Antonio; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500–2500 trees ha-1. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir – Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr-1, offsetting 1.9% of China’s annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber products with longer life spans.
  • PublicationOpen Access
    Soil C/N ratios cause opposing effects in forests compared to grasslands on decomposition rates and stabilization factors in southern European ecosystems
    (Elsevier, 2023) Blanco Vaca, Juan Antonio; Durán Lázaro, María; Luquin, Josu; San Emeterio Garciandía, Leticia; Yeste Yeste, Antonio; Canals Tresserras, Rosa María; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Soils store an important amount of carbon (C), mostly in the form of organic matter in different decomposing stages. Hence, understanding the factors that rule the rates at which decomposed organic matter is incorporated into the soil is paramount to better understand how C stocks will vary under changing atmospheric and land use conditions. We studied the interactions between vegetation cover, climate and soil factors using the Tea Bag Index in 16 different ecosystems (eight forests, eight grasslands) along two contrasting gradients in the Spanish province of Navarre (SW Europe). Such arrangement encompassed a range of four climate types, elevations from 80 to 1420 m.a.s.l., and precipitation (P) from 427 to 1881 mm year–1. After incubating tea bags during the spring of 2017, we identified strong interactions between vegetation cover type, soil C/N and precipitation affecting decomposition rates and stabilization factors. In both forests and grasslands, increasing precipitation increased decomposition rates (k) but also the litter stabilization factor (S). In forests, however, increasing the soil C/N ratio raised decomposition rates and the litter stabilization factor, while in grasslands higher C/N ratios caused the opposite effects. In addition, soil pH and N also affected decomposition rates positively, but for these factors no differences between ecosystem types were found. Our results demonstrate that soil C flows are altered by complex site-dependent and site-independent environmental factors, and that increased ecosystem lignification will significantly change C flows, likely increasing decomposition rates in the short term but also increasing the inhibiting factors that stabilize labile litter compounds.
  • PublicationOpen Access
    Drought limits tree growth more than greenness and reproduction: insights from five case studies in Spain
    (KeAi Communications, 2025-08-01) Camarero, Jesús Julio; Rubio-Cuadrado, Álvaro; González de Andrés, Ester; Valeriano, Cristina; Pizarro, Manuel; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Droughts impact forests by influencing various processes such as canopy greenness, tree growth, and reproduction, but most studies have only examined a few of these processes. More comprehensive assessments of forest responses to climate variability and water shortages are needed to improve forecasts of post-drought dynamics. Iberian forests are well-suited for evaluating these effects because they experience diverse climatic conditions and are dominated by various conifer and broadleaf species, many of which exhibit masting. We assessed how greenness, evaluated using the normalized difference vegetation index (NDVI), tree radial growth, and seed or cone production responded to drought in five tree species (three conifers: silver fir (Abies alba), Scots pine (Pinus sylvestris), and stone pine (Pinus pinea); two broadleaves: European beech (Fagus sylvatica) and holm oak (Quercus ilex) inhabiting sites with different aridity. We correlated these data with the standardized precipitation evapotranspiration index (SPEI) using the climate window analysis (climwin) package, which identifies the most relevant climate window. Drought constrained growth more than greenness and seed or cone production. Dry conditions led to high seed or cone production in species found in cool, moist sites (silver fir, beech, and Scots pine). We also found negative associations of cone production with summer SPEI in the drought-tolerant stone pine, which showed lagged growth−cone negative correlations. However, in the seasonally dry holm oak forests, severe droughts constrained both growth and acorn production, leading to a positive correlation between these variables. Drought impacts on greenness, growth, seed, and cone production depended on species phenology and site aridity. A negative correlation between growth and reproduction does not necessarily indicate trade-offs, as both may be influenced by similar climatic factors.
  • PublicationOpen Access
    CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees
    (Elsevier, 2019) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; González de Andrés, Ester; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Isolating the long-term fertilization effect of CO 2 from other climate- and site-related effects on tree growth has been proven a challenging task. To isolate long-term effects of [CO2] on water use efficiency at ecosystem level, we used the FORECAST Climate forest model, calibrated for Scots pine (Pinus sylvestris L.) forests in the southwestern Pyrenees, growing at a Mediterranean montane site and at a continental subalpine site. Future climate scenarios (RCP 4.5 and RCP 8.5) were generated using a battery of six climate models to estimate daily values of temperature and precipitation in a 90-year series. A factorial experiment was designed to disentangle the importance on C pools of three growing limiting factors (nitrogen limitation, climate (temperature + precipitation) limitation and atmospheric CO 2 concentration). The relative importance of each factor was quantified by comparing the scenario with the limitation of each individual factor turned on with the non-limitation scenario. Positive CO 2 fertilization due to improvement in water use efficiency was detected by the model, but its quantitative impact improving tree growth was minimum: its average increase in ecosystem C pools ranged from 0.3 to 0.9%. At the site with cooler climate conditions (continental), the main limitation for tree growth was climate. Such limitation will be reduced under climate change and the ecosystem will store more carbon. At the site with milder climate conditions (Mediterranean), N availability was the main limiting factor albeit modulated by water availability. Such limitation could be reduced under climate change as N cycling could accelerate (higher litterfall production and decomposition rates) but also increase if droughts become more frequent and severe. In addition, the magnitude of the uncertainty related to climate model selection was much more important than CO 2 fertilization, indicating that atmospheric processes are more important than tree physiological processes when defining how much carbon could be gained (or lost) in forests under climate change. In conclusion, due to the small changes in forest C pools caused by variation of atmospheric CO 2 concentrations compared to changes caused by other growth limiting factors (nutrients, climate), reducing uncertainty related to climate projections seems a more efficient way to reduce uncertainty in tree growth projections than increasing forest model complexity.
  • PublicationOpen Access
    Determinants and tools to evaluate the ecological sustainability of using forest biomass as an alternative energy source
    (2018) Blanco Vaca, Juan Antonio; Candel Pérez, David; Lo, Yueh-Hsin; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako Gobernua, PI037 InFORest
    Forest biomass, the most ancient of fuels, is again in the center of renewable energy production. This chapter provides an introductory view of the main factors that condition the ecological sustainability of this energy source. The basic concepts of ecological sustainability, ecological rotation, and ecological thresholds (among others) are presented. The state of the art on approaches to assess the sustainability of forest biomass production for heat and electricity is discussed, and tools available for decision-makers to evaluate the sustainability of forest biomass production and management are described. This chapter then describes the main advantages and drawbacks of forest certification, growth and yield tables, and ecological models in relationship to their use in sustainable forest management for biomass and energy production.
  • PublicationOpen Access
    Coarse woody debris' invertebrate community is affected directly by canopy type and indirectly by thinning in mixed scots pine-European beech forests
    (MDPI, 2020) Herrera Álvarez, Ximena; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Álvarez, Willin; Rivadeneira Barba, Gabriela; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias
    Research Highlights: Thinning and tree species alter the forest floor microclimate by modifying canopy cover, radiation, wind, and humidity. Thus, forest management can directly influence the edaphic mesofauna responsible for decomposing coarse woody debris (CWD). Background and Objectives: This research was carried out in the Southwestern Pyrenees Mountains (Northern Spain) and aimed to determine the influence of forest thinning and canopy type (pure Pinus sylvestris L. or a mix of P. sylvestris and Fagus sylvatica L.) on CWD colonization by edaphic fauna. Materials and Methods: CWD samples were collected belonging to intermediate and advanced decomposition stages, approximately 10 cm long and 5 cm in diameter. Using a design of three thinning intensities (0%, 20%, and 40% of basal area removed), with three replications per treatment (nine plots in total), four samples were taken per plot (two per canopy type) to reach 36 samples in total. Meso- and macrofauna were extracted from CWD samples with Berlese-Tullgren funnels, and individuals were counted and identified. Results: 19 taxonomic groups were recorded, the most abundant being the mesofauna (mites and Collembola). Mixed canopy type had a significant positive influence on richness, whereas advanced decay class had a positive significant influence on total abundance and richness. In addition, there were non-significant decreasing trends in richness and abundance with increasing thinning intensity. However, interactions among thinning intensity, canopy type, and decay class significantly affected mesofauna. Furthermore, some taxonomic groups showed differential responses to canopy type. CWD water content was positively correlated with total invertebrate abundance and some taxonomic groups. Our results suggest that stand composition has the potential to directly affect invertebrate communities in CWD, whereas stand density influence is indirect and mostly realized through changes in CWD moisture. As mesofauna is related to CWD decomposition rates, these effects should be accounted for when planning forest management transition from pure to mixed forests.
  • PublicationOpen Access
    Carbon density in boreal forests responds non-linearly to temperature: an example from the Greater Khingan Mountains, northeast China
    (Elsevier, 2023) Liu, Yang; Trancoso, Ralph; Ma, Qin; Ciais, Philippe; Gouvêa, Lidiane P.; Yue, Chaofang; Assis, Jorge; Blanco Vaca, Juan Antonio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Boreal forests play a crucial role in the global carbon (C) cycle and in climate stabilization. To better predict global C budgets, it is important to accurately estimate the size of forest C pools, and to identify the factors affecting them. We used national forest inventory data for the Greater Khingan Mountains, northeast China from 1999 to 2018 and 149 additional field plots to estimate C storage and its changes in forest vegetation, excluding C stored in soils, and to calculate the total C density in forest ecosystems. From 1999 to 2018, the vegetation C storage and density increased by 92.22 Tg and 4.30 Mg C ha−1, respectively, while the mean C sink was 4.61 Tg C yr−1. Carbon storage and density showed the same pattern, with the largest stocks in trees, followed by herbs, shrubs, and then litter. Mean C density was higher in mature forests than in young forests. The maximum C density was recorded in Populus davidiana forests, and was 2.2-times larger than in Betula davurica forests (the minimum). The mean (± standard error) total C density of forest ecosystems was 111.3 ± 2.9 Mg C ha−1, including C stored in soils. Mean annual temperature (MAT) controlled total C density, as MAT had positive effects when it was lower than the temperature of the inflection point (-2.1 to -4.6 °C) and negative effects when it was above the inflection point. The rate of change in the total C density depended on the quantile points of the conditional distribution of total C density. Natural and anthropogenic disturbances had weaker effects on C density than temperature and precipitation. In conclusion, our results indicate that there might be a temperature-induced pervasive decrease in C storage and an increase in tree mortality across Eastern Asian boreal forests with future climate warming.