Person:
Campo-Bescós, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Campo-Bescós

First Name

Miguel

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

ORCID

0000-0002-0435-3765

person.page.upna

3584

Name

Search Results

Now showing 1 - 10 of 19
  • PublicationOpen Access
    Dissolved solids and suspended sediment dynamics from five small agricultural watersheds in Navarre, Spain: a 10-year study
    (Elsevier, 2019) Merchán Elena, Daniel; Luquin Oroz, Eduardo Adrián; Hernández García, Iker; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Valle de Lersundi, Jokin del; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Dissolved solids (DS) and suspended sediment (SS) loads are considered relevant environmental problems. They are related to a wide range of on-site and off-site impacts, such as soil erosion or salinization of water bodies. In this study, the dynamics of DS and SS concentrations and loads were assessed in five small watersheds covering representative agricultural land uses in Navarre (Spain). To this end, discharge, DS and SS concentration data were collected during ten hydrological years at each watershed outlet, and loads were computed from discharge and concentration values. DS concentration followed a seasonal pattern imposed by the availability of water, with higher concentrations recorded in low-flow periods and lower concentration in the high-flow period. SS concentration was extremely variable, with a range of 2–4 orders of magnitude in concentration for any specific discharge. Temporal variations (both intra- and inter-annual) in DS loads were explained by differences in runoff, whereas those of SS were not, being the SS loads associated mainly with specific high flow events. These temporal patterns were observed for both agricultural (this study) and non-agricultural (literature) watersheds. From the data in the Navarrese watersheds and those available in the literature, we inferred that agricultural land use, in general, tends to increase the concentration of both DS and SS. Regarding DS and SS yields, the effects of agricultural land use on DS yields are controlled by the changes in runoff rather than the (small) changes in DS concentration. In this sense, land uses changes expected to increase runoff (i.e., a shift from forested to arable or from rainfed to irrigated agriculture) would increase DS yields. On the other hand, agricultural land use tends to increase SS yields, although the effect is highly variable depending on site-specific factors, both natural (e.g., watershed shape) and anthropogenic (e.g., degree of soil conservation practices). In the Navarrese watersheds, DS yields ranged from 1.1 to 2.2 Mg ha−1 year−1 whereas SS yields ranged from 0.3 to 4.3 Mg ha−1 year−1. DS yields seem to dominate under non-agricultural conditions and in most agricultural land uses at the small watershed scale. On the other hand, SS yields dominate in watersheds with increased soil erosion as a consequence of arable land use over erosion-prone watersheds.
  • PublicationOpen Access
    Evaluation of a gully headcut retreat model using multitemporal aerial photographs and digital elevation models
    (American Geophysical Union, 2013) Campo-Bescós, Miguel; Flores Cervantes, J. H.; Bras, R. L.; Casalí Sarasíbar, Javier; Giráldez Cervera, Juan Vicente; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A large fraction of soil erosion in temperate climate systems proceeds from gully headcut growth processes. Nevertheless, headcut retreat is not well understood. Few erosion models include gully headcut growth processes, and none of the existing headcut retreat models have been tested against long-term retreat rate estimates. In this work the headcut retreat resulting from plunge pool erosion in the Channel Hillslope Integrated Landscape Development (CHILD) model is calibrated and compared to long-term evolution measurements of six gullies at the Bardenas Reales, northeast Spain. The headcut retreat module of CHILD was calibrated by adjusting the shape factor parameter to fit the observed retreat and volumetric soil loss of one gully during a 36 year period, using reported and collected field data to parameterize the rest of the model. To test the calibrated model, estimates by CHILD were compared to observations of headcut retreat from five other neighboring gullies. The differences in volumetric soil loss rates between the simulations and observations were less than 0.05 m3 yr-1, on average, with standard deviations smaller than 0.35 m3 yr-1. These results are the first evaluation of the headcut retreat module implemented in CHILD with a field data set. These results also show the usefulness of the model as a tool for simulating long-term volumetric gully evolution due to plunge pool erosion.
  • PublicationOpen Access
    Crop type mapping based on Sentinel-1 backscatter time series
    (IEEE, 2018) Arias Cuenca, María; Campo-Bescós, Miguel; Álvarez Mozos, Jesús; Ingeniería; Ingeniaritza
    The high revisit time of Sentinel-1 (S1) observations enables the design of crop type mapping approaches exploiting the backscatter time series observed for the different crops. The objective of this study is to propose a supervised crop classification methodology based on the temporal signature of crops. With this aim 29 dual-pol S1 observations acquired over an agricultural area of Spain, where ground truth was available, were processed. The classification approach was based on the temporal signatures obtained for each polarization channel (VH, VV and the cross-pol ratio) for the different crops. Highest accuracies were obtained when fields were assigned to the class that minimized the RMSE, with an overall accuracy of 79% and best results for rapeseed, sunflower, alfalfa and barley.
  • PublicationOpen Access
    Gully geometry: what are we measuring?
    (European Geosciences Union, 2015) Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Much of the research on (ephemeral) gully erosion comprises the determination of the geometry of these eroded channels, especially their width and depth. This is not a simple task due to uncertainty generated by the wide range of variability in gully cross section shapes found in the field. However, in the literature, this uncertainty is not recognized so that no criteria for their measurement are indicated. The aim of this work is to make researchers aware of the ambiguity that arises when characterizing the geometry of an ephemeral gully and similar eroded channels. In addition, a measurement protocol is proposed with the ultimate goal of pooling criteria in future works. It is suggested that the geometry of a gully could be characterized through its mean equivalent width and mean equivalent depth, which, together with its length, define an “equivalent prismatic gully” (EPG). The latter would facilitate the comparison between different gullies.
  • PublicationOpen Access
    Determinación de las curvas IDF en Igueldo-San Sebastián. Comparación de diferentes métodos
    (Universidad Politécnica de Valencia, 2018) López Rodríguez, José Javier; Delgado Zabala, Oihane; Campo-Bescós, Miguel; Ingeniería; Ingeniaritza
    Las curvas de intensidad-duración-frecuencia (IDF) son una herramienta fundamental en ingeniería hidrológica. Se ha partido de la serie de precipitación de 88 años registrada cada diez minutos en la estación meteorológica de Igueldo (San Sebastián). Después de aplicar varios test para comprobar la homogeneidad y la no estacionariedad de la serie de precipitación, se determinaron las curvas IDF mediante un análisis de frecuencia con el programa Hydrognomon. Dichas curvas se compararon con las obtenidas a partir de la serie simulada con el modelo estocástico de Barlett-Lewis Modificado (MBL) y con las estimadas mediante la ecuación de Témez. El objetivo de este trabajo es la evaluación de estas dos últimas metodologías. Las curvas y los yetogramas generados con la expresión de Témez presentaron un buen ajuste a partir de periodos de retorno, T, mayores a 20 años. No fueron tan buenos los obtenidos a partir de la serie simulada con MBL.
  • PublicationOpen Access
    Assessment of soil factors controlling ephemeral gully erosion on agricultural fields
    (Wiley, 2017) Ollobarren del Barrio, Paul; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería Rural; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The soil factor is crucial in controlling and properly modeling the initiation and development of ephemeral gullies (EGs). Usually, EG initiation has been related to various soil properties (i.e. sealing, critical shear stress, moisture, texture, etc.); meanwhile, the total growth of each EG (erosion rate) has been linked with proper soil erodibility. But, despite the studies to determine the influence of soil erodibility on (ephemeral) gully erosion, a universal approach is still lacking. This is due to the complex relationship and interactions between soil properties and the erosive process. A feasible soil characterization of EG erosion prediction on a large scale should be based on simple, quick and inexpensive tests to perform. The objective of this study was to identify and assess the soil properties – easily and quickly to determine – which best reflect soil erodibility on EG erosion. Forty‐nine different physical–chemical soil properties that may participate in establishing soil erodibility were determined on agricultural soils affected by the formation of EGs in Spain and Italy. Experiments were conducted in the laboratory and in the field (in the vicinity of the erosion paths). Because of its importance in controlling EG erosion, five variables related to antecedent moisture prior to the event that generated the gullies and two properties related to landscape topography were obtained for each situation. The most relevant variables were detected using multivariate analysis. The results defined 13 key variables: water content before the initiation of EGs, organic matter content, cation exchange capacity, relative sealing index, two granulometric and organic matter indices, seal permeability, aggregates stability (three index), crust penetration resistance, shear strength and an erodibility index obtained from the Jet Test erosion apparatus. The latter is proposed as a useful technique to evaluate and predict soil loss caused by EG erosion.
  • PublicationOpen Access
    Highway paving in the southwestern Amazon alters long-term trends and drivers of regional vegetation dynamics
    (Elsevier, 2018) Klarenberg, Geraldine; Muñoz Carpena, Rafael; Campo-Bescós, Miguel; Perz, Steve G.; Ingeniería; Ingeniaritza
    Infrastructure development, specifically road paving, contributes socio-economic benefits to society worldwide. However, detrimental environmental effects of road paving have been documented, most notably increased deforestation. Beyond deforestation, we hypothesize that road paving introduces “unseen” regional scale effects on forests, due to changes to vegetation dynamics. To test this hypothesis, we focus on the tri-national frontier in the southwestern Amazon that has been subject to construction of the Inter-Oceanic Highway (IOH) between 1987 and 2010. We use a long-term remotely sensed vegetation index as a proxy for vegetation dynamics and combine these with field-based socio-ecological data and biophysical data from global datasets. We find 4 areas of shared vegetation dynamics associated with increasing extent of road paving. Applying Dynamic Factor Analysis, an exploratory dimension-reduction time series analysis technique, we identify common trends and covariates in each area. Common trends, indicating underlying unexplained effects, become relatively less important as paving increases, and covariates increase in importance. The common trends are dominated by lower frequency signals possibly embodying long-term climate variability. Human-related covariates become more important in explaining vegetation dynamics as road paving extent increases, particularly family density and travel time to market. Natural covariates such as minimum temperature and soil moisture become less important. The change in vegetation dynamics identified in this study indicates a possible change in ecosystem services along the disturbance gradient. While this study does not include all potential factors controlling dynamics and disturbance of vegetation in the region, it offers important insights for management and mitigation of effects of road paving projects. Infrastructure planning initiatives should make provisions for more detailed vegetation monitoring after road completion, with a broader focus than just deforestation. The study highlights the need to mitigate population-driven pressures on vegetation like family density and access to new markets.
  • PublicationOpen Access
    Evaluation of 2D models for the prediction of surface depression storage using realistic reference values
    (Wiley, 2016) Giménez Díaz, Rafael; Mezkiritz Barberena, Irantzu; Campo-Bescós, Miguel; Álvarez Mozos, Jesús; González de Audícana Amenábar, María; Martínez de Aguirre Escobar, Alejandro; Casalí Sarasíbar, Javier; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Depression storage (DS) is the maximum storage of precipitation and runoff in the soil surface at a given slope. The DS is determined by soil roughness that in agricultural soils is largely affected by tillage. The direct measurement of DS is not straightforward because of the natural permeability of the soil. Therefore, DS has generally been estimated from 2D/3D empirical relationships and numerical algorithms based on roughness indexes and height measurements of the soil surface, respectively. The objective of this work was to evaluate the performance of some 2D models for DS, using direct and reliable measurements of DS in an agricultural soil as reference values. The study was carried out in experimental microplots where DS was measured in six situations resulting from the combination of three types of tillage carried out parallel and perpendicular to the main slope. Those data were used as reference to evaluate four empirical models and a numerical method. Longitudinal altitudinal profiles of the relief were obtained by a laser profilometer. Infiltration measurements were carried out before and after tillage. The DS was largely affected by tillage and its direction. Highest values of DS are found on rougher surfaces mainly when macroforms cut off the dominant slope. The empirical models had a limited performance while the numerical method was the most effective, even so, with an important variability. In addition, a correct hydrological management should take into account that each type of soil tillage affects infiltration rate differently.
  • PublicationOpen Access
    Watering or buffering? Runoff and sediment pollution control from furrow irrigated fields in arid environments
    (Elsevier, 2015) Campo-Bescós, Miguel; Muñoz Carpena, Rafael; Kiker, Gregory A.; Bodah, Brian W.; Ullman, Jeffrey L.; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Surface irrigated agriculture in arid and semi-arid regions contributes to downstream environmental degradation. Changes in irrigation system operational scenarios (ISOS) can represent an economic alternative to reduce surface runoff impacts. At the same time the use of vegetative filter strips (VFS) can have a positive impact on the ecological health of rural landscapes by reducing erosion, improving water quality, increasing biodiversity, and expanding wildlife habitat. The goal of this paper is, using a combination of field data and mechanistic modeling results, to evaluate and compare the spatial effectiveness of improvements in ISOS and introduction of VFS to reduce surface runoff pollution in the semi-arid/arid furrow irrigation agroecosystem that exceeds current regulatory turbidity limits (25 NTU). Five main factor interactions were studied: four soil textures, two field slopes, three ISOS, six filter vegetation types, and ten filter lengths. Slope and runoff volume were identified as the two main drivers of sediment export from furrows. Shifting from current ISOS to less water consumptive irrigation practices reduce runoff in addition to sediment delivery to comply with environmental regulations. The implementation of 3 to 9 m vegetative buffers on experimental parcels were found to mitigate sediment delivery (greater than 90% sediment reduction) on tail drainage ditches but had limited effect in the reduction of runoff flow that can transport other dissolved pollutants. These findings were insensitive to filter vegetation type. Thus, introduction of improved ISOS is desirable while VFS may be targeted to specific hot spots within the irrigation district. This study shows that the adoption of dense vegetation buffers in vulnerable semi-arid irrigated regions can be effective to mitigate agricultural impacts and provide environmental protection. However, it should not be adopted as an alternative to proper on-site irrigation practices, rather as a complementary off-site pollution control practice.
  • PublicationOpen Access
    Comparison between capacitive and microstructured optical fiber soil moisture sensors
    (MDPI, 2018) López Aldaba, Aitor; López Torres, Diego; Campo-Bescós, Miguel; López Rodríguez, José Javier; Yerro Lizarazu, David; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Landa Ingeniaritza eta Proiektuak; Institute of Smart Cities - ISC; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería Eléctrica y Electrónica; Proyectos e Ingeniería Rural
    Soil moisture content has always been an important parameter to control because it is a deterministic factor for site-specific irrigation, seeding, transplanting, and compaction detection. In this work, a discrete sensor that is based on a SnO2–FP (Fabry-Pérot) cavity is presented and characterized in real soil conditions. As far as authors know, it is the first time that a microstructured optical fiber is used for real soil moisture measurements. Its performance is compared with a commercial capacitive soil moisture sensor in two different soil scenarios for two weeks. The optical sensor shows a great agreement with capacitive sensor’s response and gravimetric measurements, as well as a fast and reversible response; moreover, the interrogation technique allows for several sensors to be potentially multiplexed, which offers the possibility of local measurements instead of volumetric: it constitutes a great tool for real soil moisture monitoring.