Campo-Bescós, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Campo-Bescós

First Name

Miguel

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 23
  • PublicationOpen Access
    Solving the solute transport equation using breakthrough curve modeling
    (MDPI, 2024-11-22) Panahi Sofla, Amir; Ghameshlou, Arezoo N.; Liaghat, Abdolmajid; Campo-Bescós, Miguel; Seyedzadeh, Amin; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    The movement of solutes in soil is crucial due to their potential to cause soil and groundwater pollution. In this study, a mathematical model based on the Advection Dispersion Equation (ADE) was developed to evaluate solutions for solute transport. This equation enabled us to attain a relationship for concentrations at different locations and times, also known as the breakthrough curve. Five columns (5 cm in diameter and 30 cm in height) of soil types were prepared to check the validity of the results. An evaluation of the calculated relations showed high accuracy in estimating the breakthrough curve and the saturated hydraulic conductivity of the soil.
  • PublicationOpen Access
    Analysis of low power wide area network wireless technologies in smart agriculture for large-scale farm monitoring and tractor communications
    (Elsevier, 2022) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Campo-Bescós, Miguel; Azpilicueta Fernández de las Heras, Leyre; Aghzout, Otman; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper, the assessment of multiple scenario cases for large-scale farm monitoring using Low-Power Wide-Area Network (LPWAN) based near-ground sensor nodes with the interaction of both tractors and farmers are presented. The proposed scenario under analysis considers multiple communication links, namely nodes to infrastructure, nodes to tractor, nodes to farmer, tractor to infrastructure and farmer to infrastructure communications. Moreover, these scenarios are proposed for tractors and agricultural equipment performance improvement and tracking, as well as resources management within the farm field. Different link type configurations are tested in order to consider the impact of ground, spatial distribution as well as infrastructure elements. The results show that LPWAN-based WSNs can provide better performance in terms of coverage and radio link quality results than ZigBee for a non-flat large-scale farm field in both cases of near-ground fixed nodes and moving tractor and farmer. The proposed systems are validated by cloud-based platforms for LoRaWAN, Sigfox and NB-IoT communications, providing flexible and scalable solutions to enable interactive farming applications.
  • PublicationOpen Access
    Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin
    (MDPI, 2020) Peña-Angulo, Dahis; Nadal-Romero, Estela; Campo-Bescós, Miguel; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.
  • PublicationOpen Access
    The role of ethnic characteristics in the effect of income shocks on African conflict
    (Elsevier, 2021) Manotas Hidalgo, Beatriz; Pérez Sebastián, Fidel; Campo-Bescós, Miguel; Ekonomia; Ingeniaritza; Institute for Advanced Research in Business and Economics - INARBE; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Economía; Ingeniería
    This paper disentangles the ethnic drivers of the effect of food-related income shocks on African conflict employing geo-localized information. We consider diversity and political ethnic variables and several conflict definitions. We find that differentiating between organized armed-force and non-organized conflict can be more informative than between factor and output conflict. We show evidence that conflict is driven by the opportunity cost and state capacity mechanisms. Furthermore, ethnic cleavages have a large role in the transmission process of income shocks on organized armed-force conflict; whereas their role in non-organized violence is more limited. The sensitivity to ethnic heterogeneity for producer-price and droughts shocks is much larger than for consumer-price changes.
  • PublicationOpen Access
    Extended assessment of sprinkler irrigation uniformity in greenhouses using GIS and hydraulic modeling
    (MDPI, 2022) Barberena Ruiz, Íñigo; Campo-Bescós, Miguel; Casalí Sarasíbar, Javier; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Traditionally, distribution uniformity has been obtained by using rain gauges, which makes it a very expensive process. This paper sought to create a simulation strategy using QGIS and EPANET, both free software, that allowed the simulation of the water application results of all the emitters of an irrigation installation. In this way, it was possible to obtain the geospatial representation of the applied water and finally to know the distribution uniformity in the whole installation. The simulation finally fulfilled its objective and was compared with a study of distribution uniformity with rain gauges. The biggest difference between the measured and simulated data was a difference of 5.76% among the sectors. The simulated uniformity was very similar to the measured uniformity, which allowed us to affirm that the proposed simulation methodology was adequate. We believe that the methodology proposed in this article could be very useful in improving the management of sprinkler irrigation systems, particularly those in which distribution uniformity is of special importance. These improvements in management can also result in savings in water and other inputs, which are becoming increasingly important in the current context of climate change and the reduction in the impact of agriculture on the environment. Finally, similar studies could be carried out with the same tools for other pressurized irrigation systems, such as sprinkler irrigation outside greenhouses and drip irrigation.
  • PublicationOpen Access
    Evaluation of the impact of changing from rainfed to irrigated agriculture in a mediterranean watershed in Spain
    (MDPI, 2023) Oduor, Brian Omondi; Campo-Bescós, Miguel; Lana Renault, Noemí; Alfaro Echarri, Alberto; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    The conversion of cultivated areas from rainfed to irrigated agriculture alters the watershed’s hydrology and could affect the water quality and quantity. This study examined how streamflow, nitrate load, and nitrate concentration changed after irrigation implementation in a Mediterranean watershed in Navarre, Spain. The Soil Water Assessment Tool (SWAT) model was applied in the Cidacos River watershed to simulate streamflow and nitrate load under rainfed conditions. The simulated outputs were then compared with the post-irrigation observed values from mid-2017 to 2020 at the watershed outlet in Traibuenas to determine the irrigation impact. The model calibration (2000–2010) and validation (2011–2020) results for streamflow (NSE = 0.82/0.83) and nitrate load (NSE = 0.71/0.68) were satisfactory, indicating the model’s suitability for use in the watershed. A comparison of the rainfed and post-irrigation periods showed an average annual increase in streamflow (952.33 m3 ha−1, +18.8%), nitrate load (68.17 kg ha−1, +62.3%), and nitrate concentration (0.89 mg L−1 ha−1, +79%) at the watershed outlet. Irrigation also caused seasonal changes by altering the cropping cycle and increasing the streamflow and nitrate export during the summer and autumn when irrigation was at its peak. The increases in the post-irrigation period were attributed to the added irrigation water for streamflow and increased nitrogen fertilizer application due to changes in cropping for nitrate concentration and export. These findings are useful to farmers and managers in deciding the best nitrate pollution control and management measures to implement. Furthermore, these results could guide future development and expansion of irrigated lands to improve agricultural sustainability.
  • PublicationOpen Access
    On the influence of acquisition geometry in backscatter time series over wheat
    (Elsevier, 2022) Arias Cuenca, María; Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua
    Dense time series of Sentinel-1 imagery are an invaluable information source for agricultural applications. Multiple orbits can observe a specific area and their combination could improve the temporal resolution of the time series. However, the orbits have different acquisition geometries regarding incidence and azimuth angles that need to be considered. Furthermore, crops are dynamic canopies and the influence of incidence and azimuth angles might change during the agricultural season due to different phenological stages. The main objective of this letter is to evaluate the influence of different acquisition geometries in Sentinel-1 backscatter time series over wheat canopies, and to propose a strategy for their correction. A large dataset of wheat parcels (∼40,000) was used and 344 Sentinel-1 images from three relative orbits were processed during two agricultural seasons. The first analysis was a monthly evaluation of the influence of incidence angle on backscatter (σ0) and terrain flattened backscatter (γ0). It showed that terrain flattening significantly reduced the backscatter dependence on incidence angle, being negligible in VH polarization but not completely in VV polarization. Incidence angle influence in VV backscatter changed in time due to wheat growth dynamics. To further reduce it, an incidence angle normalization technique followed by an azimuthal anisotropy correction were applied. In conclusion, γ0 enabled a reasonable combination of different relative orbits, that may be sufficient for many applications. However, for detailed analyses, the correction techniques might be implemented to further reduce orbit differences, especially in bare soil periods or winter months.
  • PublicationOpen Access
    Effects of climate change on streamflow and nitrate pollution in an agricultural mediterranean watershed in northern Spain
    (Elsevier, 2023) Oduor, Brian Omondi; Campo-Bescós, Miguel; Lana Renault, Noemí; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Predicting water quality and quantity response to climate change in a watershed is very difficult due to the complexity and uncertainties in estimating and understanding future hydrological conditions. However, hydrological models could simplify the processes and predict future impacts of agricultural activities. This study aimed to evaluate the applicability of the Soil Water Assessment Tool (SWAT) model for climate change prediction of streamflow and nitrate load in an agricultural Mediterranean watershed in northern Spain. The model was first evaluated for simulating streamflow and nitrate load under rainfed agricultural conditions in the Cidacos River watershed in Navarre, Spain. Then, climate change impact analysis on streamflow and nitrate load was conducted in the short-term (2011–2040), medium-term (2041–2070), and long-term (2071–2100) future projections relative to the historical baseline period (1971–2000) under the RCP4.5 and RCP8.5 CO2 emission scenarios. The model evaluation showed a good model performance result during calibration (2000–2010) and validation (2011–2020) for streamflow (NSE = 0.82/0.83) and nitrate load (NSE = 0.71/0.68), indicating its suitability for adoption in the watershed. The climate change projection results showed a steady decline in streamflow and nitrate load for RCP4.5 and RCP8.5 in all projections, with the long-term projection scenario of RCP8.5 greatly affected. Autumn and winter saw a considerable drop in comparison to spring and summer. The decline in streamflow was attributed to the projected decrease in precipitation and increase in temperatures, while the nitrate load decline was consistent with the projected streamflow decline. Based on these projections, the long-term projection scenarios of RCP8.5 indicate dire situations requiring urgent policy changes and management interventions to minimize and mitigate the resulting climate change effects. Therefore, adapted agricultural management practices are needed to ensure sustainable water resource utilization and efficient nitrogen fertilizer application rates in the watershed to reduce pollution.
  • PublicationOpen Access
    EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water
    (Nature Research, 2023-08-04) Matthews, Francis; Verstraeten, Gert; Borrelli, Pasquale; Vanmaercke, Matthias; Poesen, J.; Steegen, An; Degré, Aurore; Cárceles Rodríguez, Belén; Bielders, Charles; Franke, Christine; Alary, Claire; Zumr, David; Patault, Edouard; Nadal-Romero, Estela; Smolska, Ewa; Licciardello, Feliciana; Swerts, Gilles; Thodsen, Hans; Casalí Sarasíbar, Javier; Eslava, Javier; Richet, Jean-Baptiste; Ouvry, Jean-François; Farguell, Joaquim; Święchowicz, Jolanta; Nunes, João Pedro; Pak, Lai Ting; Liakos, Leonidas ; Campo-Bescós, Miguel; Żelazny, Mirosław; Delaporte, Morgan; Pineux, Nathalie; Henin, Nathan; Bezak, Nejc; Lana Renault, Noemí ; Tzoraki, Ourania; Giménez Díaz, Rafael; Li, Tailin; Durán Zuazo, Víctor Hugo; Bagarello, Vincenzo; Pampalone, Vincenzo; Ferro, Vito; Úbeda, Xavier; Panagos, Panos; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    As a network of researchers we release an open-access database (EUSEDcollab) of water discharge and suspended sediment yield time series records collected in small to medium sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of openaccess data at relevant spatial scales for studies on runoff, soil loss by water erosion and sediment delivery. Multi-source measurement data from numerous researchers and institutions were harmonised into a common time series and metadata structure. Data reuse is facilitated through accompanying metadata descriptors providing background technical information for each monitoring station setup. Across ten European countries, EUSEDcollab covers over 1600 catchment years of data from 245 catchments at event (11 catchments), daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in its focus on small to medium catchment drainage areas (median = 43 km2, min = 0.04 km2, max = 817 km2) with applicability for soil erosion research. We release this database with the aim of uniting people, knowledge and data through the European Union Soil Observatory (EUSO).
  • PublicationOpen Access
    Quantification of agricultural best management practices impacts on sediment and phosphorous export in a small catchment in southeastern Sweden
    (Elsevier, 2023) Oduor, Brian Omondi; Campo-Bescós, Miguel; Lana Renault, Noemí; Kyllmar, Katarina; Mårtensson, Kristina; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Agricultural activities contribute to water pollution through sediments and nutrient export, negatively affecting water quality and aquatic ecosystems. However, implementing best management practices (BMPs) could help control sediments and nutrient losses from agricultural catchments. This study used the Soil Water Assessment Tool (SWAT) model to assess the effectiveness of four BMPs in reducing sediment and phosphorus export in a small agricultural catchment (33 km2) in southeastern Sweden. The SWAT model was first evaluated for its ability to simulate streamflow, sediment load, and total phosphorous load from 2005 to 2020. Then, the calibrated parameters were used to simulate the agricultural BMP scenarios by modifying relevant parameters. The model performed satisfactorily during calibration and validation for streamflow (NSE = 0.80/0.84), sediment load (NSE = 0.67/0.69), and total phosphorous load (NSE = 0.61/0.62), indicating its suitability for this study. The results demonstrate varying effects of BMP implementation on sediment and phosphorus (soluble and total) export, with no significant change in streamflow. Filter strips were highly effective in reducing sediment (−32%), soluble phosphorus (−67%), and total phosphorous (−66%) exports, followed by sedimentation ponds with −35%, −36%, and −50% reductions, respectively. Grassed waterways and no-tillage were less impactful on pollutant reduction, with grassed waterways showing a slight increase (+4%) in soluble phosphorus and no-tillage having a minimal effect on sediment (−1.3%) and total phosphorus (−0.2%) export. These findings contribute to the ongoing efforts to mitigate sediment and nutrient pollution in Swedish agricultural areas, thereby supporting the conservation and restoration of aquatic ecosystems, and enhancing sustainable agricultural practices.