Sanchis Gúrpide, Pablo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sanchis Gúrpide

First Name

Pablo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 17
  • PublicationOpen Access
    Influence of the aging model of lithium-ion batteries on the management of PV self-consumption systems
    (IEEE, 2018) Berrueta Irigoyen, Alberto; Pascual Miqueleiz, Julio María; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI038 INTEGRA-RENOVABLES
    Lithium-ion batteries are gaining importance for a variety of applications due to their improving characteristics and decreasing price. An accurate knowledge of their aging is required for a successful use of these ESSs. The vast number of models that has been proposed to predict these phenomena raise doubts about the suitability of a model for a particular battery application. The performance of three models published for a Sanyo 18650 cylindrical cell in a self-consumption system are compared in this work. Measured photovoltaic production and home consumption with a sampling frequency of 15 minutes are used for this comparison. The different aging predictions calculated by these three models are analyzed, compared and discussed. These comparison is particularized for two management strategies. The first of them maximizes the self-consumption PV energy, while the second reduces the maximum power peak demanded from the grid.
  • PublicationOpen Access
    Supercapacitors: electrical characteristics, modelling, applications and future trends
    (IEEE, 2019) Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; San Martín Biurrun, Idoia; Eftekhari, Ali; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI020 RENEWABLE-STORAGE
    Energy storage systems are playing an increasingly important role in a variety of applications, such as electric vehicles or grid-connected systems. In this context, supercapacitors (SCs) are gaining ground due to their high power density, good performance and long maintenance-free lifetime. For this reason, SCs are a hot research topic, and several papers are being published on material engineering, performance characterization, modelling and post-mortem analysis. A compilation of the most important millstones on this topic is essential to keep researchers on related fields updated about new potentials of this technology. This review paper covers recent research aspects and applications of SCs, highlighting the relationship between material properties and electrical characteristics. It begins with an explanation of the energy storage mechanisms and materials used by SCs. Based on these materials, the SCs are classified, their key features are summarised, and their electrochemical characteristics are related to electrical performance. Given the high interest in system modelling and the large number of papers published on this topic, modelling techniques are classified, explained and compared, addressing their strengths and weaknesses, and the experimental techniques used to measure the modelled properties are described. Finally, the market sectors in which SCs are successfully used, as well as their growth expectations are analysed. The analysis presented herein gives account of the expansion that SC market is currently undergoing and identifies the most promising research trends on this field.
  • PublicationOpen Access
    Lithium-ion battery model and experimental validation
    (2015) Berrueta Irigoyen, Alberto; Irigaray, Víctor; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    A simple battery model is useful for: Sizing of the storage system for a particular application; Designing other elements connected to the battery; Managing the storage system operation. This poster consists on: Tests to characterize a lithium-ion battery at Ta=23 ⁰C. Methodology to fit the parameters of the battery model; Parameter trends related to the state of charge; Experimental validation and model accuracy.
  • PublicationOpen Access
    Hydrogen-based energy storage for a distributed generation system
    (Spanish Hydrogen Association, 2016) San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    One of the most typical distributed generation systems are electrical microgrid, which consist on small electrical grids, generally connected to the main grid, with a decentralized management structure. Electrical microgrids allow higher renewable energy integration in the grid, achieving a cost decrease and improving the grid quality [1]. These mi- crogrids incorporate renewable generation systems and energy consumers. Moreover, they have storage systems to balance generation and consumption as well as the exchanged power with the main grid. Traditionally, lead-acid batter- ies have been used in microgrids. However, these batteries have some drawbacks, being the most important its poor performance in partial state of charge, which is critical for a microgrid. A suitable option for the storage system is hy- drogen technology. These systems have high energy density, which makes the storage system able to assume seasonal variability of renewable resources. This paper proposes a sizing methodology for storage systems based on hydrogen for grid-tied electrical microgrids. This methodology optimizes the relationship between the storage system size and the consumption of grid power.
  • PublicationOpen Access
    Static and dynamic characterization of a supercapacitor
    (2014) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Supercapacitors (SCs) have recently received a major boost as a result of the development of multiple applications, such as the electric vehicle and electric microgrids. Storage systems consisting of SCs combined with batteries or fuel cells have been proposed in multiple applications. Since SCs store energy as an electric field, they are able to efficiently manage high power and high frequency charge‐discharge cycles. This ability to handle high power in a wide frequency range grants them a wide advantage against other energy‐storage technologies. A static and dynamic characterization of the Maxwell SC BMOD0083 has been accomplished in this study.
  • PublicationOpen Access
    Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants
    (Elsevier, 2018) Berrueta Irigoyen, Alberto; Heck, Michael; Jantsch, Martin; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua PI038 INTEGRA-RENOVABLES
    The unpredictable nature of renewable energies is drawing attention to lithium-ion batteries. In order to make full utilization of these batteries, some research works are focused on the management of existing systems, while others propose sizing techniques based on business models. However, in order to optimise the global system, a comprehensive methodology that considers both battery sizing and management at the same time is needed. This paper proposes a new optimisation algorithm based on a combination of dynamic programming and a region elimination technique that makes it possible to address both problems at the same time. This is of great interest, since the optimal size of the storage system depends on the management strategy and, in turn, the design of this strategy needs to take account of the battery size. The method is applied to a real installation consisting of a 100 kWp rooftop photovoltaic plant and a Li-ion battery system connected to a grid with variable electricity price. Results show that, unlike conventional optimisation methods, the proposed algorithm reaches an optimised energy dispatch plan that leads to a higher net present value. Finally, the tool is used to provide a sensitivity analysis that identifies key informative variables for decision makers
  • PublicationOpen Access
    Critical comparison of energy management algorithms for lithium-ion batteries in renewable power plants
    (IEEE, 2019) Berrueta Irigoyen, Alberto; Soto Cabria, Adrián; García Solano, Miguel; Parra Laita, Íñigo de la; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Lithium-ion batteries are gaining importance for a variety of applications due to their price decrease and characteristics improvement. A good energy management strategy is required in order to increase the profitability of an energy system using a Li-ion battery for storage. The vast number of management algorithms that has been proposed to optimize the achieved profit, with diverse computational power requirements and using models with different complexity, raise doubts about the suitability of an algorithm and the required computation power for a particular application. The performance of three energy management algorithms based on linear, quadratic, and dynamic programming are compared in this work. A realistic scenario of a medium-sized PV plant with a constraint of peak shaving is used for this comparison. The results achieved by the three algorithms are compared and the grounds of the differences are analyzed. Among the three compared algorithms, the quadratic one seems to be the most suitable for renewableenergy applications, given the undue simplification of the battery aging required by the linear algorithm and the discretization and computational power required by a dynamic algorithm.
  • PublicationOpen Access
    Influence of renewable power fluctuations on the lifetime prediction of lithium-ion batteries in a microgrid environment
    (IEEE, 2019) Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    This contribution analyses lifetime estimation errors due to the effect of power fluctuations in lithium-ion batteries connected to microgrids when different time steps are used for the calculations. Usually, not every second data are available or the computational cost is excessively high. Those facts result in the use of larger time steps. However, the increase of the time steps may turn out in too optimistic predictions. Data from a real microgrid make it possible to optimize calculation times while keeping low errors. The results show that when 1 minute time step is set, the computation time is reduced by 14.4 times while the lifetime overstatement is only 3.5-5.2% higher, depending on the aging model.
  • PublicationOpen Access
    On the requirements of the power converter for second-life lithium-ion batteries
    (IEEE, 2019) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Pascual Miqueleiz, Julio María; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    The use of lithium-ion batteries is increasing year after year, especially in the automotive sector. Given the high requirements of electric vehicles, their energy storage systems are discarded when they still have around 70% of its initial capacity. These discarded batteries are being studied as a low-price option for stationary systems, mostly related to renewable energy generation, with lower battery requirements. However, the increasing dispersion of cell capacity detailed in this contribution limits the use of second-life cells if regular battery management systems and power converters. We present in this contribution an experimental comparison of the capacity dispersion between fresh and second-life cells, and detail the relationship between the capacity dispersion and the required BMS functionality. Furthermore, we include the ageing phenomena in the analysis by means of experimental ageing results, given that the capacity dispersion is enlarged as the battery ages. After this, we use this data to quantify advantages and disadvantages of a combined BMS and power converter, based on a multilevel topology, compared to a conventional BMS. The most relevant result, when a 55-cell battery is analysed, is a 65% increase in capacity during its whole second life if the BMS and power converter are combined by means of a multilevel topology. The increased level of complexity required by the combined BMS-power converter architecture is analysed in this contribution, providing a convenient tool for the selection of the most suitable option for each application.
  • PublicationOpen Access
    Electro-thermal modelling of a supercapacitor and experimental validation
    (Elsevier, 2014) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Hernández, Andoni; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    This paper reports on the electro-thermal modelling of a Maxwell supercapacitor (SC), model BMOD0083 with a rated capacitance of 83 F and rated voltage of 48 V. One electrical equivalent circuit was used to model the electrical behaviour whilst another served to simulate the thermal behaviour. The models were designed to predict the SC operating voltage and temperature, by taking the electric current and ambient temperature as input variables. A five-stage iterative method, applied to three experiments, served to obtain the parameter values for each model. The models were implemented in MATLABSimulink , where they interacted to reciprocally provide information. These models were then validated through a number of tests, subjecting the SC to different current and frequency profiles. These tests included the validation of a bank of supercapacitors integrated into an electric microgrid, in a real operating environment. Satisfactory results were obtained from the electric and thermal models, with RMSE values of less than 0.65 V in all validations.