Sanchis Gúrpide, Pablo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sanchis Gúrpide

First Name

Pablo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 30
  • PublicationOpen Access
    DC capacitance reduction in photovoltaic inverters based on PV voltage feed-forward compensation
    (IEEE, 2021) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In the case of photovoltaic (PV) inverters, an adequate input voltage regulation is fundamental to maximize or limit the power. When employing the traditional control, the input capacitance requires to be oversized in order to reduce the influence of the PV generator and achieve a stable control in the whole operating point. This paper proposes a voltage control method which permits reducing the capacitance by a factor of 5, thereby reducing the system cost. The control includes a feed-forward compensation of the PV voltage, making it possible to achieve a fast and stable control with a simple implementation. The proposed method is verified by simulation, showing the problems of the traditional control and the superior performance of the proposed control.
  • PublicationOpen Access
    Electronic controlled device for the analysis and design of photovoltaic systems
    (IEEE, 2005) Sanchis Gúrpide, Pablo; López Taberna, Jesús; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The characterization and design of photovoltaic systems is a difficult issue due to the variable operation atmospheric conditions. With this aim, simulators and measurement equipments have been proposed. However, most of them do not deal with real atmospheric conditions. This letter proposes an electronic device that first measures the real evolution of the I-V characteristic curves of photovoltaic modules and generators, and then physically emulates in real time these curves to test photovoltaic inverters. The device consists of a dc-dc converter, a microcontroller and a data storage unit. The two operation modes (emulation and measurement) are digitally driven by the microcontroller. The converter current is controlled by means of a variable-hysteresis control loop, whose reference is provided by the microcontroller. In addition, a digital voltage control loop is designed to find out the complete characteristic curves of the photovoltaic generators. A 15-kW prototype is designed and built that can measure three times per second the characteristic curves of up to seven generators and then emulate their electrical behavior to test photovoltaic inverters. With the proposed device, the optimal configuration and performance of photovoltaic modules and generators, as well as the operation of photovoltaic inverters can be thoroughly analyzed under real atmospheric conditions.
  • PublicationOpen Access
    Fuzzy logic-based energy management system design for residential grid-connected microgrids
    (IEEE, 2018) Arcos Avilés, Diego; Pascual Miqueleiz, Julio María; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Guinjoan Gispert, Francesc; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua
    This paper presents the design of a low complexity fuzzy logic controller of only 25-rules to be embedded in an energy management system for a residential grid-connected microgrid including renewable energy sources and storage capability. The system assumes that neither the renewable generation nor the load demand is controllable. The main goal of the design is to minimize the grid power profile fluctuations while keeping the battery state of charge within secure limits. Instead of using forecasting-based methods, the proposed approach use both the microgrid energy rate-of-change and the battery state of charge to increase, decrease, or maintain the power delivered/absorbed by the mains. The controller design parameters (membership functions and rule-base) are adjusted to optimize a pre-defined set of quality criteria of the microgrid behavior. A comparison with other proposals seeking the same goal is presented at simulation level, whereas the features of the proposed design are experimentally tested on a real residential microgrid implemented at the Public University of Navarre.
  • PublicationOpen Access
    Effect of the inner current loop on the voltage regulation for three-phase photovoltaic inverters
    (IEEE, 2020) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In three-phase grid-connected PV inverters, regulating the input voltage is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance is currently oversized. This paper reveals the important effect of the inner current loop in the voltage stability and proposes to use a Proportional (P) controller instead of a PI controller. If tuned following the guidelines provided in this paper, the P controller makes it possible to design a stable voltage loop without increasing the input capacitance, thus reducing the converter cost.
  • PublicationOpen Access
    High frequency power transformers with foil windings: maximum interleaving and optimal design
    (IEEE, 2015) Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Foil conductors and primary and secondary interleaving are normally used to minimize winding losses in high frequency transformers used for high-current power applications. However, winding interleaving complicates the transformer assembly, since taps are required to connect the winding sections, and also complicates the transformer design, since it introduces a new tradeoff between minimizing losses and reducing the construction difficulty. This paper presents a novel interleaving technique, named maximum interleaving, that makes it possible to minimize the winding losses as well as the construction difficulty. An analytical design methodology is also proposed in order to obtain free cooled transformers with a high efficiency, low volume and, therefore, a high power density. For the purpose of evaluating the advantages of the proposed maximum interleaving technique, the methodology is applied to design a transformer positioned in the 5 kW 50 kHz intermediate high frequency resonant stage of a commercial PV inverter. The proposed design achieves a transformer power density of 28 W/cm3 with an efficiency of 99.8%. Finally, a prototype of the maximum-interleaved transformer is assembled and validated satisfactorily through experimental tests.
  • PublicationOpen Access
    Control strategy for an integrated photovoltaic-battery system
    (IEEE, 2017) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In photovoltaic-battery systems, more attention is usually paid to the MPPT control while the battery management is put aside. This paper proposes two control strategies for an integrated PV-battery system, both of them making it possible to perform MPPT or regulate the battery voltage to its maximum value in order to prevent it from overcharging. Simulation results prove the feasibility of both controls.
  • PublicationOpen Access
    Fuzzy-based energy management of a residential electro-thermal microgrid based on power forecasting
    (IEEE, 2018) Arcos Avilés, Diego; Gordillo, Rodolfo; Guinjoan Gispert, Francesc; Sanchis Gúrpide, Pablo; Pascual Miqueleiz, Julio María; Marietta, Martin P.; Marroyo Palomo, Luis; Ibarra, Alexander; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, an energy management strategy based on microgrid power forecasting is applied to a residential grid-connected electro-thermal microgrid with the aim of smoothing the power profile exchanged with the grid. The microgrid architecture under study considers electrical and thermal renewable generation, energy storage system (ESS), and loads. The proposed strategy manages the energy stored in the ESS to cover part of the energy required by the thermal generation system for supplying domestic hot water to the residence. The simulation results using real data and the comparison with previous strategy have demonstrated the effectiveness of the proposed strategy.
  • PublicationOpen Access
    Influence of the power supply on the energy efficiency of an alkaline water electrolyser
    (Elsevier, 2009) Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Gubía Villabona, Eugenio; Gandía Pascual, Luis; Diéguez Elizondo, Pedro; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza; Química Aplicada; Kimika Aplikatua; Gobierno de Navarra / Nafarroako Gobernua
    Electric energy consumption represents the greatest part of the cost of the hydrogen produced by water electrolysis. An effort is being carried out to reduce this electric consumption and improve the global efficiency of commercial electrolysers. Whereas relevant progresses are being achieved in cell stack configurations and electrodes performance, there are practically no studies on the effect of the electric power supply topology on the electrolyser energy efficiency. This paper presents an analysis on the energy consumption and efficiency of a 1 N m3 h1 commercial alkaline water electrolyser and their dependence on the power supply topology. The different topologies of power supplies are first summarised, analysed and classified into two groups: thyristor-based (ThPS) and transistor-based power supplies (TrPS). An Electrolyser Power Supply Emulator (EPSE) is then designed, developed and satisfactorily validated by means of simulation and experimental tests. With the EPSE, the electrolyser is characterised both obtaining its I–V curves for different temperatures and measuring the useful hydrogen production. The electrolyser is then supplied by means of two different emulated electric profiles that are characteristic of typical ThPS and TrPS. Results show that the cell stack energy consumption is up to 495 W h N m3 lower when it is supplied by the TrPS, which means 10% greater in terms of efficiency.
  • PublicationOpen Access
    An energy management system design using fuzzy logic control: smoothing the grid power profile of a residential electro-thermal microgrid
    (IEEE, 2021) Arcos Avilés, Diego; Pascual Miqueleiz, Julio María; Guinjoan Gispert, Francesc; Marroyo Palomo, Luis; García Gutiérrez, Gabriel; Gordillo, Rodolfo; Llanos, Jacqueline; Sanchis Gúrpide, Pablo; Motoasca, Emilia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This work deals with the design of a Fuzzy Logic Control (FLC) based Energy Management System (EMS) for smoothing the grid power prole of a grid-connected electro-thermal microgrid. The case study aims to design an Energy Management System (EMS) to reduce the impact on the grid power when renewable energy sources are incorporated to pre-existing grid-connected household appliances. The scenario considers a residential microgrid comprising photovoltaic and wind generators, at-plate collectors, electric and thermal loads and electrical and thermal energy storage systems and assumes that neither renewable generation nor the electrical and thermal load demands are controllable. The EMS is built through two low-complexity FLC blocks of only 25 rules each. The first one is in charge of smoothing the power prfile exchanged with the grid, whereas the second FLC block drives the power of the Electrical Water Heater (EWH). The EMS uses the forecast of the electrical and thermal power balance between generation and consumption to predict the microgrid behavior, for each 15-minute interval, over the next 12 hours. Simulations results, using real one-year measured data show that the proposed EMS design achieves 11.4% reduction of the maximum power absorbed from the grid and an outstanding reduction of the grid power profile ramp-rates when compared with other state-of-the-art studies.
  • PublicationOpen Access
    Design methodology for the frequency shift method of islanding prevention and analysis of its detection capability
    (Wiley, 2005) Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Coloma, Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Islanding protection is one of the most important sources of discrepancy in gridconnected photovoltaic systems. Even when islanding is not very likely to happen, regulations demand the photovoltaic inverters to implement effective protection methods. Due to its several advantages, the frequency shift method of islanding prevention, commonly known as Sandia Frequency Shift, is one of the most important active methods. This method implements a positive feedback of the frequency that tends to move it outside the trip limits in case of islanding. The method shows a very high detection capability, which depends on both the values of the method parameters and the characteristics of the load that remains in the same power section after islanding. This paper develops a mathematical analysis of the Sandia Frequency Shift method and proposes a new methodology to design its parameters as a trade-off between the detection capability, which is evaluated as a function of the load characteristics, and the distortion that the method could introduce in the grid as a consequence of transitory frequency disturbances. The ability of this methodology to design the method parameters and achieve the highest detection capability is satisfactorily proved by means of both simulation and experimental results on a commercial photovoltaic inverter that implements the method once its parameters have been designed with the proposed methodology.