Publication: Fuzzy logic-based energy management system design for residential grid-connected microgrids
Date
Authors
Director
Publisher
Métricas Alternativas
Abstract
This paper presents the design of a low complexity fuzzy logic controller of only 25-rules to be embedded in an energy management system for a residential grid-connected microgrid including renewable energy sources and storage capability. The system assumes that neither the renewable generation nor the load demand is controllable. The main goal of the design is to minimize the grid power profile fluctuations while keeping the battery state of charge within secure limits. Instead of using forecasting-based methods, the proposed approach use both the microgrid energy rate-of-change and the battery state of charge to increase, decrease, or maintain the power delivered/absorbed by the mains. The controller design parameters (membership functions and rule-base) are adjusted to optimize a pre-defined set of quality criteria of the microgrid behavior. A comparison with other proposals seeking the same goal is presented at simulation level, whereas the features of the proposed design are experimentally tested on a real residential microgrid implemented at the Public University of Navarre.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.