Sanchis Gúrpide, Pablo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Sanchis Gúrpide
First Name
Pablo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Influence of the aging model of lithium-ion batteries on the management of PV self-consumption systems(IEEE, 2018) Berrueta Irigoyen, Alberto; Pascual Miqueleiz, Julio María; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI038 INTEGRA-RENOVABLESLithium-ion batteries are gaining importance for a variety of applications due to their improving characteristics and decreasing price. An accurate knowledge of their aging is required for a successful use of these ESSs. The vast number of models that has been proposed to predict these phenomena raise doubts about the suitability of a model for a particular battery application. The performance of three models published for a Sanyo 18650 cylindrical cell in a self-consumption system are compared in this work. Measured photovoltaic production and home consumption with a sampling frequency of 15 minutes are used for this comparison. The different aging predictions calculated by these three models are analyzed, compared and discussed. These comparison is particularized for two management strategies. The first of them maximizes the self-consumption PV energy, while the second reduces the maximum power peak demanded from the grid.Publication Open Access Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants(Elsevier, 2018) Berrueta Irigoyen, Alberto; Heck, Michael; Jantsch, Martin; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua PI038 INTEGRA-RENOVABLESThe unpredictable nature of renewable energies is drawing attention to lithium-ion batteries. In order to make full utilization of these batteries, some research works are focused on the management of existing systems, while others propose sizing techniques based on business models. However, in order to optimise the global system, a comprehensive methodology that considers both battery sizing and management at the same time is needed. This paper proposes a new optimisation algorithm based on a combination of dynamic programming and a region elimination technique that makes it possible to address both problems at the same time. This is of great interest, since the optimal size of the storage system depends on the management strategy and, in turn, the design of this strategy needs to take account of the battery size. The method is applied to a real installation consisting of a 100 kWp rooftop photovoltaic plant and a Li-ion battery system connected to a grid with variable electricity price. Results show that, unlike conventional optimisation methods, the proposed algorithm reaches an optimised energy dispatch plan that leads to a higher net present value. Finally, the tool is used to provide a sensitivity analysis that identifies key informative variables for decision makersPublication Open Access Critical comparison of energy management algorithms for lithium-ion batteries in renewable power plants(IEEE, 2019) Berrueta Irigoyen, Alberto; Soto Cabria, Adrián; García Solano, Miguel; Parra Laita, Íñigo de la; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaLithium-ion batteries are gaining importance for a variety of applications due to their price decrease and characteristics improvement. A good energy management strategy is required in order to increase the profitability of an energy system using a Li-ion battery for storage. The vast number of management algorithms that has been proposed to optimize the achieved profit, with diverse computational power requirements and using models with different complexity, raise doubts about the suitability of an algorithm and the required computation power for a particular application. The performance of three energy management algorithms based on linear, quadratic, and dynamic programming are compared in this work. A realistic scenario of a medium-sized PV plant with a constraint of peak shaving is used for this comparison. The results achieved by the three algorithms are compared and the grounds of the differences are analyzed. Among the three compared algorithms, the quadratic one seems to be the most suitable for renewableenergy applications, given the undue simplification of the battery aging required by the linear algorithm and the discretization and computational power required by a dynamic algorithm.Publication Open Access Influence of renewable power fluctuations on the lifetime prediction of lithium-ion batteries in a microgrid environment(IEEE, 2019) Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaThis contribution analyses lifetime estimation errors due to the effect of power fluctuations in lithium-ion batteries connected to microgrids when different time steps are used for the calculations. Usually, not every second data are available or the computational cost is excessively high. Those facts result in the use of larger time steps. However, the increase of the time steps may turn out in too optimistic predictions. Data from a real microgrid make it possible to optimize calculation times while keeping low errors. The results show that when 1 minute time step is set, the computation time is reduced by 14.4 times while the lifetime overstatement is only 3.5-5.2% higher, depending on the aging model.Publication Open Access Characterization and capacity dispersion of lithium-ion second-life batteries from electric vehicles(IEEE, 2019) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaNowadays, electric vehicle batteries reutilization is considered such as a feasible alternative to recycling, as it allows to benefit from their remaining energy and to enlarge their lifetime. Stationary applications as self-consumption or isolated systems support are examples of possible second life uses for these batteries. However, the modules that compose these batteries have very heterogeneous properties, and therefore condition their performance. This paper aims to characterize and analyze the existing capacity dispersion of Nissan Leaf modules that have reached the end of their lifetime on their original application and of new modules of this Electric Vehicle, in order to establish a comparison between them.Publication Open Access Methodology for sizing stand-alone hybrid systems: a case study of a traffic control system(Elsevier, 2018) San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCThis paper proposes a methodology for sizing stand-alone hybrid photovoltaic-wind power generation systems. This methodology makes it possible to optimise the overall performance of the stand-alone system components, based on the premise of guaranteeing the power supply throughout the useful life of the installation at a minimum cost. The sizing is performed in two stages. Firstly, the components of the wind and photovoltaic power generation subsystem are obtained and, secondly, the size of the storage subsystem is determined. For the storage subsystem sizing, account is taken of the variation in efficiency according to the operating point and also the deterioration of the subsystem due to aging and, therefore, the loss of available energy during the useful life of the installation. This methodology is applied to a stand-alone traffic control system located on a secondary road in the Autonomous Community of Valencia (Spain). This system comprises wind and photovoltaic power generation components, a lithium battery bank and various traffic management components. Finally, an analysis of the proposed sizing is made. Satisfactory results are obtained, showing how the proposed methodology makes it possible to optimise the sizing of stand-alone systems with regard to the size of its components, cost and operation.Publication Open Access Analysis of the main battery characterization techniques and experimental comparison of commercial 18650 Li-ion cells(IEEE, 2019) Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaOver the coming years, major growth in the use of Li-ion batteries is expected, both in electric mobility as well as in stationary applications, be it in self-consumption systems and micro grids or in large renewable power generation plants. The proper characterization of lithium-ion cells is of vital importance for the development of precise models that permit the simulation and prediction of their behavior, so as to suitably configure cell groupings for the resulting battery packs, and to properly select the most suitable cells from the extensive manufacturer offer. In this work, an analysis is conducted of the main techniques used in the literature to characterize batteries. Also, an experimental comparative is carried out on 18650 Liion cells from three large global manufacturers, focusing on the primary methodologies used to characterize capacity, internal resistance and open circuit voltage. Finally, the advantages and disadvantages are presented for the methodologies used, based on the experimental results obtained.