Urío Larrea, Asier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Urío Larrea

First Name

Asier

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Application of the Sugeno integral in fuzzy rule-based classification
    (Elsevier, 2024-09-27) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Urío Larrea, Asier; López Molina, Carlos; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Fuzzy Rule-Based Classification System (FRBCS) is a well-known technique to deal with classification problems. Recent studies have considered the usage of the Choquet integral and its generalizations (e.g.: 𝐶𝑇 -integral, 𝐶𝐹 - Integral and 𝐶𝐶-integral) to enhance the performance of such systems. Such fuzzy integrals were applied to the Fuzzy Reasoning Method (FRM) to aggregate the fired fuzzy rules when classifying new data. However, the Sugeno integral, another well-known aggregation operator, obtained good results in other applications, such as brain–computer interfaces. These facts led to the present study, in which we consider the Sugeno integral in classification problems. That is, the Sugeno integral is applied in the FRM of a widely used FRBCS, and its performance is analyzed over 33 different datasets from the literature, also considering different fuzzy measures. To show the efficiency of this new approach, the results obtained are also compared with previous studies that involved the application of different aggregation functions. Finally, we perform a statistical analysis of the application.
  • PublicationOpen Access
    Análisis de los cambios en los patrones de temperatura mediante técnicas de stream clustering
    (CAEPIA, 2024) Urío Larrea, Asier; Pereira Dimuro, Graçaliz; Andreu-Pérez, Javier; Camargo, Heloisa A.; Aguirre Eraso, Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    El cambio climático afecta a las condiciones medioambientales de las distintas regiones. La capacidad de constatar estos cambios es una eficaz herramienta para adaptarse a la evolución de las condiciones. Los datos meteorológicos se generan continuamente en múltiples estaciones de todo el mundo, proporcionando una valiosa información sobre la variabilidad en el tiempo de los patrones climáticos. El estudio de este flujo de datos nos permite comprender mejor los nuevos patrones climáticos. Este trabajo explora, mediante un algoritmo de agrupamiento de flujos de datos (stream clustering), el potencial de emplear datos meteorológicos obtenidos en diferentes localizaciones geográficas para rastrear el cambio en los patrones climáticos en la Comunidad Foral de Navarra durante los últimos 20 años. El estudio de caso mostró la aplicabilidad de los métodos de flujos de datos a la segmentación incremental de regiones geográficas en función de sus factores climatológicos.