Caballero Murillo, Primitivo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Caballero Murillo

First Name

Primitivo

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 78
  • PublicationOpen Access
    The role of Chrysoperla carnea (Steph.) (neuroptera: Chrysopidae) as a potential dispersive agent of noctuid baculoviruses
    (MDPI, 2020) Gutiérrez Cárdenas, Oscar Giovanni; Adán, Ángeles; Beperet Arive, Inés; Medina, Pilar; Caballero Murillo, Primitivo; Garzón, Agustín; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Baculoviruses (BV) are highly effective against lepidopteran pests of economic importance such as Spodoptera exigua. The combined use of entomopathogens and macrobiological control agents requires the study of their relationships. Laboratory bioassays were developed to evaluate the interactions between the multiple nucleopolyhedroviruses of S. exigua (SeMNPV) and Autographa californica (AcMNPV), and the predator Chrysoperla carnea. The microscopic examination of predator’s excreta (larval drops and meconia) after the ingestion of BV-infected S. exigua revealed the presence of viral occlusion bodies (OBs). The reinfection of S. exigua larvae with BVs-contaminated excreta by using OBs water suspensions or by direct application both yielded high mortality values but different speed-of-kill results. Meconia killed before in suspensions due to their higher viral load and larval excretion drops did so in direct application due to their liquid nature and their easiness of consumption. The prey-mediated ingestion of SeMNPV and AcMNPV triggered slight effects in C. carnea, which were probably derived from the food nutritional quality. Chrysoperla carnea larvae did not discriminate between healthy and BV-infected S. exigua, while a preference was shown for S. exigua (healthy or infected) vs. Macrosiphum euphorbiae. Our findings present C. carnea, and particularly its larvae, as a promissory candidate for BV dispersion in the field.
  • PublicationOpen Access
    Sequence comparison between three geographically distinct Spodoptera frugiperda multiple nucleopolyhedrovirus isolates: detecting positively selected genes
    (Elsevier, 2011-01-14) Simón de Goñi, Oihane; Palma Dovis, Leopoldo; Beperet Arive, Inés; Muñoz Labiano, Delia; López Ferber, Miguel; Caballero Murillo, Primitivo; Williams, Trevor; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The complete genomic sequence of a Nicaraguan plaque purified Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) genotype SfMNPV-B was determined and compared to previously sequenced isolates from United States (SfMNPV-3AP2) and Brazil (SfMNPV-19). The genome of SfMNPV-B (132,954 bp) was 1623 bp and 389 bp larger than that of SfMNPV-3AP2 and SfMNPV-19, respectively. Genome size differences were mainly due to a deletion located in the SfMNPV-3AP2 egt region and small deletions and point mutations in SfMNPV-19. Nucleotide sequences were strongly conserved (99.35% identity) and a high degree of predicted amino acid sequence identity was observed. A total of 145 open reading frames (ORFs) were identified in SfMNPV-B, two of them (sf39a and sf110a) had not been previously identified in the SfMNPV-3AP2 and SfMNPV-19 genomes and one (sf57a) was absent in both these genomes. In addition, sf6 was not previously identified in the SfMNPV-19 genome. In contrast, SfMNPV-B and SfMNPV-19 both lacked sf129 that had been reported in SfMNPV-3AP2. In an effort to identify genes potentially involved in virulence or in determining population adaptations, selection pressure analysis was performed. Three ORFs were identified undergoing positive selection: sf49 (pif-3), sf57 (odv-e66b) and sf122 (unknown function). Strong selection for ODV envelope protein genes indicates that the initial infection process in the insect midgut is one critical point at which adaptation acts during the transmission of these viruses in geographically distant populations. The function of ORF sf122 is being examined.
  • PublicationOpen Access
    Nucleopolyhedrovirus coocclusion technology: a new concept in the development of biological insecticides
    (Frontiers Media, 2022) Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Nucleopolyhedroviruses (NPV, Baculoviridae) that infect lepidopteran pests have an established record as safe and effective biological insecticides. Here, we describe a new approach for the development of NPV-based insecticides. This technology takes advantage of the unique way in which these viruses are transmitted as collective infectious units, and the genotypic diversity present in natural virus populations. A ten-step procedure is described involving genotypic variant selection, mixing, coinfection and intraspecific coocclusion of variants within viral occlusion bodies. Using two examples, we demonstrate how this approach can be used to produce highly pathogenic virus preparations for pest control. As restricted host range limits the uptake of NPV-based insecticides, this technology has recently been adapted to produce custom-designed interspecific mixtures of viruses that can be applied to control complexes of lepidopteran pests on particular crops, as long as a shared host species is available for virus production. This approach to the development of NPV-based insecticides has the potential to be applied across a broad range of NPV-pest pathosystems.
  • PublicationOpen Access
    Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests
    (MDPI, 2020) Domínguez Arrizabalaga, Mikel; Villanueva San Martín, Maite; Escriche, Baltasar; Ancín Azpilicueta, Carmen; Caballero Murillo, Primitivo; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias
    Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and in the construction of transgenic crops to provide protection against main beetle pests. In this review, we provide an update on the activity of Bt toxins against coleopteran insects, as well as specific information about the structure and mode of action of coleopteran Bt proteins.
  • PublicationOpen Access
    A native variant of Chrysodeixis chalcites nucleopolyhedrovirus: the basis for a promising bioinsecticide for control of C. chalcites in Canary Islands' banana crops
    (Elsevier, 2013-08-13) Bernal Rodríguez, Alexandra; Williams, Trevor; Hernández Suárez, Estrella; Carnero, Aurelio; Caballero Murillo, Primitivo; Simón de Goñi, Oihane; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Chrysodeixis chalcites (Lepidoptera: Noctuidae) larvae cause up to 30% production loss in banana crops in the Canary Islands. Larvae of this species are susceptible to a nucleopolyhedrovirus (ChchNPV). This study aimed at evaluating the genetic diversity and bioinsecticidal activity of ChchNPV isolates collected from C. chalcites larvae in the Canary Islands. From a total 97 isolates collected in different banana greenhouses, restriction endonuclease analysis identified five genetic variants that differed slightly from ChchNPV isolates from Netherlands (ChchSNPV-NL) and Almería, Spain (ChchNPV-SP1). Physical maps revealed minimal differences at the genome level, mostly due to variation in the position/existence of restriction sites. ChchSNPV-TF1 was the most prevalent variant, representing 78% of isolates examined, and was isolated at all Canary Island sampling sites. This isolate was the most pathogenic isolate against C. chalcites second instars in terms of concentration-mortality metrics, compared to homologous variants or two heterologous viruses Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Anagrapha falcifera multiple nucleopolyhedrovirus (AnfaMNPV). ChchSNPV-TF1 was also one of the fastest killing variants although no differences were observed in occlusion body production among the different variants in second instars. We conclude that ChchSNPV-TF1 merits further evaluation as the basis for a biological insecticide for control of C. chalcites in banana crops in the Canary Islands.
  • PublicationOpen Access
    Study of the bacillus thuringiensis Cry1Ia protein oligomerization promoted by midgut brush border membrane vesicles of lepidopteran and coleopteran insects, or cultured insect cells
    (MDPI, 2020) Khorramnejad, Ayda; Domínguez Arrizabalaga, Mikel; Caballero Murillo, Primitivo; Escriche, Baltasar; Bel, Yolanda; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Bacillus thuringiensis (Bt) produces insecticidal proteins that are either secreted during the vegetative growth phase or accumulated in the crystal inclusions (Cry proteins) in the stationary phase. Cry1I proteins share the three domain (3D) structure typical of crystal proteins but are secreted to the media early in the stationary growth phase. In the generally accepted mode of action of 3D Cry proteins (sequential binding model), the formation of an oligomer (tetramer) has been described as a major step, necessary for pore formation and subsequent toxicity. To know if this could be extended to Cry1I proteins, the formation of Cry1Ia oligomers was studied by Western blot, after the incubation of trypsin activated Cry1Ia with insect brush border membrane vesicles (BBMV) or insect cultured cells, using Cry1Ab as control. Our results showed that Cry1Ia oligomers were observed only after incubation with susceptible coleopteran BBMV, but not following incubation with susceptible lepidopteran BBMV or non-susceptible Sf21 insect cells, while Cry1Ab oligomers were persistently detected after incubation with all insect tissues tested, regardless of its host susceptibility. The data suggested oligomerization may not necessarily be a requirement for the toxicity of Cry1I proteins.
  • PublicationOpen Access
    Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda
    (Blackwell Science, 2003-10-17) Martínez Castillo, Ana Mabel; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena
    Certain optical brighteners are effective UV protectants, and can improve the insecticidal activity of baculoviruses. We evaluated the effect of 10 optical brighteners, from four chemically different groups, on the insecticidal activity of a nucleopolyhedrovirus (SfMNPV) in third instar Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). The most effective optical brighteners were Blankophor BBH and Calcofluor M2R, both of which are stilbenes. The distyryl-biphenyl derivative, Tinopal CBS, had no effect, whereas the stilbenes, Blankophor CLE and Leucophor SAC and the styryl-benzenic derivative, Blankophor ER, resulted in a decrease in virus induced mortality compared to larvae infected with SfMNPV alone. Mixtures of SfMNPV + 0.1% Calcofluor M2R had relative potencies of 2.7, 6.5, and 61.6 in the second, third, and fourth instars, respectively. The mean time to death differed with instar, but was not affected by the addition of 0.1% Calcofluor M2R. Analysis of published studies indicated that the concentration of Calcofluor M2R-related stilbenes was positively correlated with the relative potency observed in mixtures with homologous NPVs. The average magnitude of optical brightener activity did not differ significantly between early instars of 10 species of Lepidoptera. We conclude that virus formulations containing optical brighteners may be valuable for control of late instar lepidopteran pests.
  • PublicationOpen Access
    Superinfection exclusion in alphabaculovirus infections is concomitant with actin reorganization
    (American Society for Microbiology, 2014) Beperet Arive, Inés; Irons, Sarah L.; Simón de Goñi, Oihane; King, Linda A.; Williams, Trevor; Possee, Robert D.; López Ferber, Miguel; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses—AcMNPV and SfMNPV—but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses.
  • PublicationOpen Access
    Draft genome sequences of two bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin
    (MDPI, 2014) Palma Dovis, Leopoldo; Muñoz Labiano, Delia; Berry, Colin; Murillo Martínez, Jesús; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 μg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins.
  • PublicationOpen Access
    Bacmid expression of granulovirus enhancin En3 accumulates in cell soluble fraction to potentiate nucleopolyhedrovirus infection
    (MDPI, 2021) Ricarte Bermejo, Adriana; Simón de Goñi, Oihane; Fernández González, Ana Beatriz; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.