Caballero Murillo, Primitivo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Caballero Murillo
First Name
Primitivo
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
78 results
Search Results
Now showing 1 - 10 of 78
Publication Open Access Functional importance of deletion mutant genotypes in an insect nucleopolyhedrovirus population(American Society for Microbiology, 2005) Simón de Goñi, Oihane; Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza EkoizpenaA Nicaraguan isolate of a nucleopolyhedrovirus (SfNIC) that attacks the fall armyworm, Spodoptera frugiperda, survives as a mixture of nine genotypes (SfNIC A to I) that all present genomic deletions, except variant B (complete genotype). Sequencing of cloned restriction fragments revealed that genotypic variants lack between 5 and 16 of the open reading frames present in a contiguous sequence of 18 kb of the SfNIC genome. The absence of oral infectivity of SfNIC-C and -D variants is related to the deletion of the pif and/or pif-2 gene, while that of SfNIC-G remains unexplained. The presence of open reading frame 10, homolog of Se030, also appeared to influence pathogenicity in certain variants. Previous studies demonstrated a significant positive interaction between genotypes B and C. We compared the median lethal concentration of single genotypes (A, B, C, D, and F) and co-occluded genotype mixtures (B+A, B+D, B+F, A+C, and F+C in a 3:1 ratio). Mixtures B+A and B+D showed increased pathogenicity, although only B+D restored the activity of the mixture to that of the natural population. Mixtures of two deletion variants (A+C and F+C) did not show interactions in pathogenicity. We conclude that minority genotypes have an important influence on the overall pathogenicity of the population. These results clearly demonstrate the value of retaining genotypic diversity in virus-based bioinsecticides.Publication Open Access Harnessing Chelonus inanitus for efficient Spodoptera spp. management: learning about production to explore roles in baculovirus transmission(Elsevier, 2025-03-01) Dáder, Beatriz; Morel, Ariel; Muñoz Labiano, Delia; Caballero Murillo, Primitivo; Medina, Pilar; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraControl of Spodoptera spp. (Lepidoptera: Noctuidae) crop pests has traditionally relied on heavy insecticide use. Baculoviruses (BV) from the genera Alphabaculovirus and Betabaculovirus offer effective, species-specific alternatives for managing their outbreaks. Joint use of BVs with natural enemies, such as parasitoids, could further enhance control of Spodoptera spp. by contributing to virus dispersion. In a series of experiments, we studied the optimal host age and parasitization duration of the endoparasitoid Chelonus inanitus L. (Hymenoptera: Braconidae) for parasitoid production, as well as the parasitoid preference and mechanical transmission of Spodoptera exigua and Spodoptera littoralis multiple nucleopolyhedroviruses (SeMNPV and SpliMNPV). We found that parasitoid progeny production was significantly lower when parasitized eggs were either too young (24 h) or too old (96 h), highlighting the importance of host egg age. Additionally, there was an increasing trend in parasitoid offspring production with longer parasitization exposure times, particularly at 6 and 24 h compared to shorter durations. Chelonus inanitus did not discriminate between SpliMNPV-contaminated and non-contaminated eggs, but had a remarkable preference for SeMNPV-contaminated eggs. The parasitoid effectively dispersed BVs, not only from BV-treated eggs to heathy ones by parasitization, but also, and even more efficiently, by the sole contact with a contaminated surface without eggs. Understanding complex BV-parasitoid interactions is crucial for developing integrated pest management strategies that maximize the efficacy of both parasites.Publication Open Access Analysis of a naturally-occurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses(Elsevier, 2012-10-21) Simón de Goñi, Oihane; Palma Dovis, Leopoldo; Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako GobernuaThe Nicaraguan population of Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV-NIC, is structured as a mixture of nine genotypes (A–I). Occlusion bodies (OBs) of SfMNPV-C, -D and -G pure genotypes are incapable of oral transmission; a phenotype which in SfMNPV-C and -D is due to the absence of pif1 and pif2 genes. The complete sequence of the SfMNPV-G genome was determined to identify possible factors involved in this phenotype. Deletions of 4860 bp (22,366–27,225) and 60 bp (119,759–119,818) were observed in SfMNPV-G genome compared with that of the predominant complete genotype SfMNPV-B (132,954 bp). However no genes homologous to previously described per os infectivity factors were located within the deleted sequences. Significant differences were detected in the nucleotide sequence in sf58 gene (unknown function) that produced changes in the amino acid sequence and the predicted secondary structure of the corresponding protein. This gene is conserved only in lepidopteran baculoviruses (alpha- and betabaculoviruses). To determine the role of sf58 in peroral infectivity a deletion mutant was constructed using bacmid technology. OBs of the deletion mutant (Sf58null) were not orally infectious for S. frugiperda larvae, whereas Sf58null rescue virus OBs recovered oral infectivity. Sf58null DNA and occlusion derived virions (ODVs) were as infective as SfMNPV bacmid DNA and ODVs in intrahemocelically infected larvae or cell culture, indicating that defects in ODV or OB morphogenesis were not involved in the loss of peroral infectivity. Addition of optical brightener or the presence of the orally infectious SfMNPV-B OBs in mixtures with SfMNPV-G OBs did not recover Sf58null OB infectivity. According to these results sf58 is a new per os infectivity factor present only in lepidopteran baculoviruses.Publication Open Access Domain shuffling between Vip3Aa and Vip3Ca: chimera stability and insecticidal activity against European, American, African, and Asian pests(MDPI, 2020) Gomis Cebolla, Joaquín; Santos, Rafael Ferreira dos; Wang, Yueqin; Caballero Sánchez, Javier; Caballero Murillo, Primitivo; He, Kanglai; Jurat Fuentes, Juan Luis; Ferré, Juan; Institute for Multidisciplinary Research in Applied Biology - IMABThe bacterium Bacillus thuringiensis produces insecticidal Vip3 proteins during the vegetative growth phase with activity against several lepidopteran pests. To date, three different Vip3 protein families have been identified based on sequence identity: Vip3A, Vip3B, and Vip3C. In this study, we report the construction of chimeras by exchanging domains between Vip3Aa and Vip3Ca, two proteins with marked specificity differences against lepidopteran pests. We found that some domain combinations made proteins insoluble or prone to degradation by trypsin as most abundant insect gut protease. The soluble and trypsin-stable chimeras, along with the parental proteins Vip3Aa and Vip3Ca, were tested against lepidopteran pests from different continents: Spodoptera exigua, Spodoptera littoralis, Spodoptera frugiperda, Helicoverpa armigera, Mamestra brassicae, Anticarsia gemmatalis, and Ostrinia furnacalis. The exchange of the Nt domain (188 N-terminal amino acids) had little effect on the stability and toxicity (equal or slightly lower) of the resulting chimeric protein against all insects except for S. frugiperda, for which the chimera with the Nt domain from Vip3Aa and the rest of the protein from Vip3Ca showed a significant increase in toxicity compared to the parental Vip3Ca. Chimeras with the C-terminal domain from Vip3Aa (from amino acid 510 of Vip3Aa to the Ct) with the central domain of Vip3Ca (amino acids 189–509 based on the Vip3Aa sequence) made proteins that could not be solubilized. Finally, the chimera including the Ct domain of Vip3Ca and the Nt and central domain from Vip3Aa was unstable. Importantly, an insect species tolerant to Vip3Aa but susceptible to Vip3Ca, such as Ostrinia furnacalis, was also susceptible to chimeras maintaining the Ct domain from Vip3Ca, in agreement with the hypothesis that the Ct region of the protein is the one conferring specificity to Vip3 proteins.Publication Open Access Determinant factors in the production of a co-occluded binary mixture of Helicoverpa armigera alphabaculovirus (HearNPV) genotypes with desirable insecticidal characteristics(Public Library of Science, 2016) Arrizubieta Celaya, Maite; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14065:RI1A co-occluded binary mixture of Helicoverpa armigera nucleopolyhedrovirus genotypes HearSP1B and HearLB6 at a 1:1 ratio (HearSP1B+HearLB6) was selected for the development of a virus-based biological insecticide, which requires an efficient large-scale production system. In vivo production systems require optimization studies in each host-virus pathosystem. In the present study, the effects of larval instar, rearing density, timing of inoculation, inoculum concentration and temperature on the production of HearSP1B+HearLB6 in its homologous host were evaluated. The high prevalence of cannibalism in infected larvae (40–87%) indicated that insects require individual rearing to avoid major losses in OB production. The OB production of recently molted fifth instars (7.0 x 109 OBs/larva), combined with a high prevalence of mortality (85.7%), resulted in the highest overall OB yield (6.0 x 1011 OBs/100 inoculated larvae), compared to those of third or fourth instars. However, as inoculum concentration did not influence final OB yield, the lowest concentration, LC80 (5.5 x 106 OBs/ml), was selected. Incubation temperature did not significantly influence OB yield, although larvae maintained at 30°C died 13 and 34 hours earlier than those incubated at 26°C and 23°C, respectively. We conclude that the efficient production of HearSP1B+HearLB6 OBs involves inoculation of recently molted fifth instars with a LC80 concentration of OBs followed by individual rearing at 30°C.Publication Open Access Use of Bacillus thuringiensis toxins for control of the cotton pest earias insulana (Boisd.) (Lepidoptera: Noctuidae)(American Society for Microbiology, 2006) Ibarguchi Mendía, M.ª Ángeles; Estela, Anna; Ferré, Juan; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza EkoizpenaThirteen of the most common lepidopteran-specific Cry proteins of Bacillus thuringiensis have been tested for their efficacy against newly hatched larvae of two populations of the spiny bollworm, Earias insulana. At a concentration of 100 μg of toxin per milliliter of artificial diet, six Cry toxins (Cry1Ca, Cry1Ea, Cry1Fa, Cry1Ja, Cry2Aa, and Cry2Ab) were not toxic at all. Cry1Aa, Cry1Ja, and Cry2Aa did not cause mortality but caused significant inhibition of growth. The other Cry toxins (Cry1Ab, Cry1Ac, Cry1Ba, Cry1Da, Cry1Ia, and Cry9Ca) were toxic to E. insulana larvae. The 50% lethal concentration values of these toxins ranged from 0.39 to 21.13 μg/ml (for Cry9Ca and Cry1Ia, respectively) for an E. insulana laboratory colony originating from Egypt and from 0.20 to 4.25 μg/ml (for Cry9Ca and Cry1Da, respectively) for a laboratory colony originating from Spain. The relative potencies of the toxins in the population from Egypt were highest for Cry9Ca and Cry1Ab, and they were both significantly more toxic than Cry1Ac and Cry1Ba, followed by Cry1Da and finally Cry1Ia. In the population from Spain, Cry9Ca was the most toxic, followed in decreasing order by Cry1Ac and Cry1Ba, and the least toxic was Cry1Da. Binding experiments were performed to test whether the toxic Cry proteins shared binding sites in this insect. 125I-labeled Cry1Ac and Cry1Ab and biotinylated Cry1Ba, Cry1Ia, and Cry9Ca showed specific binding to the brush border membrane vesicles from E. insulana. Competition binding experiments among these toxins showed that only Cry1Ab and Cry1Ac competed for the same binding sites, indicating a high possibility that this insect may develop cross-resistance to Cry1Ab upon exposure to Cry1Ac transgenic cotton but not to the other toxins tested.Publication Open Access Chrysodeixis chalcites, a pest of banana crops on the Canary Islands: incidence, economic losses and current control measures(Elsevier, 2018-03-05) Fuentes Barrera, Ernesto Gabriel; Hernández Suárez, Estrella; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaChrysodeixis chalcites is an emergent pest in bananas (Musa acuminata Colla) grown on the Canary Islands. Feeding damage to leaves and fruit and the control measures targeted at this pest were evaluated over a two-year period (2013–2014). The prevalence of infestations (42–100%) on the islands was similar during the two years of the study. Mean foliar damage (1.5–7.3% depending on island) and fruit damage (1.0–5.7%) detected in field surveys varied significantly across islands, plantation aspect (north- or south-facing) and season. Fruit damage was not correlated with foliar damage (P > 0.05). The weight of C. chalcites damaged bananas varied significantly (0.2–4.2% of harvested fruit) across islands, particularly in the spring. Overall, 3155 tonnes of bananas/yr are likely discarded due to C. chalcites damage, representing 1.5% of annual production or 2.68 million €/yr. The most frequently used pesticide was indoxacarb, usually applied on three occasions per crop cycle, for which the cost of control measures would average 240 €/ha per crop cycle. The direct damage that C. chalcites causes to banana fruit results in significant economic losses in addition to the direct costs of pesticide based control measures. Effective and sustainable control strategies are required against this pest.Publication Open Access Expression of a peroral infection factor determines pathogenicity and population structure in an insect virus(Public Library of Science, 2013) Simón de Goñi, Oihane; Williams, Trevor; Cerutti, Martine; Caballero Murillo, Primitivo; López Ferber, Miguel; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaA Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.Publication Open Access Potential of Cry10Aa and Cyt2Ba, two minority δ-endotoxins produced by Bacillus thuringiensis ser. israelensis, for the control of Aedes aegypti larvae(MDPI, 2020) Valtierra de Luis, Daniel; Villanueva San Martín, Maite; Lai, Liliana; Williams, Trevor; Caballero Murillo, Primitivo; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y AlimentaciónBacillus thuringiensis ser. israelensis (Bti) has been widely used as microbial larvicide for the control of many species of mosquitoes and blackflies. The larvicidal activity of Bti resides in Cry and Cyt δ-endotoxins present in the parasporal crystal of this pathogen. The insecticidal activity of the crystal is higher than the activities of the individual toxins, which is likely due to synergistic interactions among the crystal component proteins, particularly those involving Cyt1Aa. In the present study, Cry10Aa and Cyt2Ba were cloned fromthe commercial larvicideVectoBac-12AS® and expressed in the acrystalliferous Bt strain BMB171 under the cyt1Aa strong promoter of the pSTAB vector. The LC50 values for Aedes aegypti second instar larvae estimated at 24 hpi for these two recombinant proteins (Cry10Aa and Cyt2Ba) were 299.62 and 279.37 ng/mL, respectively. Remarkable synergistic mosquitocidal activity was observed between Cry10Aa and Cyt2Ba (synergistic potentiation of 68.6-fold) when spore + crystal preparations, comprising a mixture of both recombinant strains in equal relative concentrations, were ingested by A. aegypti larvae. This synergistic activity is among the most powerful described so far with Bt toxins and is comparable to that reported for Cyt1A when interacting with Cry4Aa, Cry4Ba or Cry11Aa. Synergistic mosquitocidal activity was also observed between the recombinant proteins Cyt2Ba and Cry4Aa, but in this case, the synergistic potentiation was 4.6-fold. In conclusion, although Cry10Aa and Cyt2Ba are rarely detectable or appear as minor components in the crystals of Bti strains, they represent toxicity factors with a high potential for the control of mosquito populations.Publication Open Access UV protection and insecticidal activity of microencapsulated Vip3Ag4 protein in Bacillus megaterium(Elsevier, 2024-06-17) Palma Dovis, Leopoldo; Ruiz de Escudero Fuentemilla, Íñigo; Mañeru Oria, Francisco Javier; Berry, Colin; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMABIn this study, secretable Vip3Ag4 protein was encapsulated in Bacillus megaterium and used for quantitative bioassays, in order to determine the UV photoprotective capacity of the cell, for preventing inactivation of the insecticidal activity of the protein. The non-encapsulated and purified protein was exposed to the UV light showing a LC50 of 518 ng/cm2 against Spodoptera littoralis larvae, whereas the exposed encapsulated protein exhibited 479 ng/cm2. In addition to the capability to accumulate Vip3 proteins for the development of novel insecticidal formulates, the B. megaterium cell has demonstrated to provide moderate protection against the deleterious action of UV light.