Caballero Murillo, Primitivo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Caballero Murillo

First Name

Primitivo

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 78
  • PublicationOpen Access
    Baculovirus expression and functional analysis of Vpa2 proteins from Bacillus thuringiensis
    (MDPI, 2020) Simón de Goñi, Oihane; Palma Dovis, Leopoldo; Fernández González, Ana Beatriz; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    The mode of action underlying the insecticidal activity of the Bacillus thuringiensis (Bt) binary pesticidal protein Vpa1/Vpa2 is uncertain. In this study, three recombinant baculoviruses were constructed using Bac-to-Bac technology to express Vpa2Ac1 and two novel Vpa2-like genes, Vpa2-like1 and Vpa2-like2, under the baculovirus p10 promoter in transfected Sf9 cells. Pairwise amino acid analyses revealed a higher percentage of identity and a lower number of gaps between Vpa2Ac1 and Vpa2-like2 than to Vpa2-like1. Moreover, Vpa2-like1 lacked the conserved Ser-Thr-Ser motif, involved in NAD binding, and the (F/Y)xx(Q/E)xE consensus sequence, characteristic of the ARTT toxin family involved in actin polymerization. Vpa2Ac1, Vpa2-like1 and Vpa2-like2 transcripts and proteins were detected in Sf9 culture cells, but the signals of Vpa2Ac1 and Vpa2-like2 were weak and decreased over time. Sf9 cells infected by a recombinant bacmid expressing Vpa2-like1 showed typical circular morphology and produced viral occlusion bodies (OBs) at the same level as the control virus. However, expression of Vpa2Ac1 and Vpa2-like2 induced cell polarization, similar to that produced by the microfilament-destabilizing agent cytochalasin D and OBs were not produced. The presence of filament disrupting agents, such as nicotinamide and nocodazole, during transfection prevented cell polarization and OB production was observed. We conclude that Vpa2Ac1 and Vpa2-like2 proteins likely possess ADP-ribosyltransferase activity that modulated actin polarization, whereas Vpa2-like1 is not a typical Vpa2 protein. Vpa2-like2 has now been designated Vpa2Ca1 (accession number AAO86513) by the Bacillus thuringiensis delta-endotoxin nomenclature committee.
  • PublicationOpen Access
    Gender-mediated differences in vertical transmission of a nucleopolyhedrovirus
    (Public Library of Science, 2013) Virto Garayoa, Cristina; Zárate Chaves, Carlos Andrés; López Ferber, Miguel; Murillo Pérez, Rosa; Caballero Murillo, Primitivo; Williams, Trevor; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    With the development of sensitive molecular techniques for detection of low levels of asymptomatic pathogens, it becoming clear that vertical transmission is a common feature of some insect pathogenic viruses, and likely to be essential to virus survival when opportunities for horizontal transmission are unfavorable. Vertical transmission of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) is common in natural populations of S. exigua. To assess whether gender affected transgenerational virus transmission, four mating group treatments were performed using healthy and sublethally infected insects: i) healthy males (H=)6healthy females (HR); ii) infected males (I=)6healthy females (HR); iii) healthy males (H=)6infected females (IR) and iv) infected males (I=)6infected females (IR). Experimental adults and their offspring were analyzed by qPCR to determine the prevalence of infection. Both males and females were able to transmit the infection to the next generation, although female-mediated transmission resulted in a higher prevalence of infected offspring. Malemediated venereal transmission was half as efficient as maternally-mediated transmission. Egg surface decontamination studies indicated that the main route of transmission is likely transovarial rather than transovum. Both male and female offspring were infected by their parents in similar proportions. Incorporating vertically-transmitted genotypes into virusbased insecticides could provide moderate levels of transgenerational pest control, thereby extending the periods between bioinsecticide applications.
  • PublicationOpen Access
    Lacanobia oleracea nucleopolyhedrovirus (LaolNPV): a new European species of alphabaculovirus with a narrow host range
    (Public Library of Science, 2017) Simón de Goñi, Oihane; Erlandson, Martin A.; Frayssinet, Marie; Williams, Trevor; Theilmann, David A.; Volkoff, Anne Nathalie; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ1406-RI1
    During an insect sampling program in alfalfa crops near Montpellier, France in 2011, Lacanobia oleracea larvae were collected that died due to nucleopolyhedrovirus infection (LaolNPV). This virus was subjected to molecular and biological characterization. The virus was a multiple nucleocapsid NPV that showed similar restriction profiles to Mamestra configurata NPV-A (MacoNPV-A) but with significant differences. Polypeptide analysis demonstrated similar proteins in occlusion bodies and occlusion derived virions, to those observed in NPVs from Mamestra spp. Terminal sequencing revealed that the genome organization shared similarity with that of MacoNPV-A. The most homologous virus was MacoNPV-A 90/2 isolate (95.63% identity and 96.47% similarity), followed by MacoNPV-A 90/4 strain (95.37% and 96.26%), MacoNPV-B (89.21% and 93.53%) and M. brassicae MNPV (89.42% and 93.74%). Phylogenetic analysis performed with lef-8, lef-9, polh and a concatenated set of genes showed that LaolNPV and the Mamestra spp. NPVs clustered together with HaMNPV, but with a closer genetic distance to MacoNPV-A strains. The Kimura 2-parameter (K-2-P) distances of the complete genes were greater than 0.05 between LaolNPV and the MbMNPV/MacoNPV-B/HaMNPV complex, which indicates that LaolNPV is a distinct species. K-2-P distances were in the range 0.015±0.050 for comparisons of LaolNPV with MacoNPV-A strains, such that additional biological characteristics should be evaluated to determine species status. While MacoNPV-A was pathogenic to seven lepidopteran species tested, LaolNPV was only pathogenic to Chrysodeixis chalcites. Given these findings, Lacanobia oleracea nucleopolyhedrovirus should be considered as a new species in the Alphabaculovirus genus.
  • PublicationOpen Access
    Baculovirus genetic diversity and population structure
    (MDPI, 2025-05-07) López Ferber, Miguel; Caballero Murillo, Primitivo; Williams, Trevor; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Baculoviruses can naturally regulate lepidopteran populations and are used as biological insecticides. The genetic diversity of these viruses affects their survival and efficacy in pest control. For nucleopolyhedroviruses, occlusion-derived virions and the occlusion body facilitate the transmission of groups of genomes, whereas this is not the case for granuloviruses. We review the evidence for baculovirus genetic diversity in the environment, in the host insect, and in occlusion bodies and virions. Coinfection allows defective genotypes to persist through complementation and results in the pseudotyping of virus progeny that can influence their transmissibility and insecticidal properties. Genetic diversity has marked implications for the development of pest resistance to virus insecticides. We conclude that future research is warranted on the physical segregation of genomes during virus replication and on the independent action of virions during infection. We also identify opportunities for studies on the transmission of genetic diversity and host resistance to viruses.
  • PublicationOpen Access
    Coocclusion of Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) and Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV): pathogenicity and stability in homologous and heterologous hosts
    (MDPI, 2022) Arrizubieta Celaya, Maite; Simón de Goñi, Oihane; Ricarte Bermejo, Adriana; López Ferber, Miguel; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako Gobernua
    Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) is a virulent pathogen of lepidopterans in the genera Heliothis and Helicoverpa, whereas Helicoverpa armigera multiple nu-cleopolyhedrovirus (HearSNPV) is a different virus species with a broader host range. This study aimed to examine the consequences of coocclusion of HearSNPV and HearMNPV on the patho-genicity, stability and host range of mixed-virus occlusion bodies (OBs). HearSNPV OBs were approximately 6-fold more pathogenic than HearMNPV OBs, showed faster killing by approximately 13 h, and were approximately 45% more productive in terms of OB production per larva. For coocclusion, H. armigera larvae were first inoculated with HearMNPV OBs and subsequently inoculated with HearSNPV OBs at intervals of 0-72 h after the initial inoculation. When the interval between inoculations was 12-24 h, OBs collected from virus-killed insects were found to comprise 41¿57% of HearSNPV genomes, but the prevalence of HearSNPV genomes was greatly reduced (3- 4%) at later time points. Quantitative PCR (qPCR) analysis revealed the presence of HearSNPV genomes in a small fraction of multinucleocapsid ODVs representing 0.47¿0.88% of the genomes quan-tified in ODV samples, indicating that both viruses had replicated in coinfected host cells. End-point dilution assays on ODVs from cooccluded mixed-virus OBs confirmed the presence of both viruses in 41.9¿55.6% of wells that were predicted to have been infected by a single ODV. A control exper-iment indicated that this result was unlikely to be due to the adhesion of HearSNPV ODVs to HearMNPV ODVs or accidental contamination during ODV band extraction. Therefore, the dispar-ity between the qPCR and end-point dilution estimates of the prevalence of mixed-virus ODVs likely reflected virus-specific differences in replication efficiency in cell culture and the higher in-fectivity of pseudotyped ODVs that were produced in coinfected parental cells. Bioassays on H. armigera, Spodoptera frugiperda and Mamestra brassicae larvae revealed that mixed-virus OBs were capable of infecting heterologous hosts, but relative potency values largely reflected the proportion of HearMNPV present in each mixed-virus preparation. The cooccluded mixtures were unstable in serial passage; HearSNPV rapidly dominated during passage in H. armigera whereas HearMNPV rapidly dominated during passage in the heterologous hosts. We conclude that mixed-virus coocclusion technology may be useful for producing precise mixtures of viruses with host range properties suitable for the control of complexes of lepidopteran pests in particular crops, although this requires validation by field testing.
  • PublicationOpen Access
    Domain shuffling between Vip3Aa and Vip3Ca: chimera stability and insecticidal activity against European, American, African, and Asian pests
    (MDPI, 2020) Gomis Cebolla, Joaquín; Santos, Rafael Ferreira dos; Wang, Yueqin; Caballero Sánchez, Javier; Caballero Murillo, Primitivo; He, Kanglai; Jurat Fuentes, Juan Luis; Ferré, Juan; Institute for Multidisciplinary Research in Applied Biology - IMAB
    The bacterium Bacillus thuringiensis produces insecticidal Vip3 proteins during the vegetative growth phase with activity against several lepidopteran pests. To date, three different Vip3 protein families have been identified based on sequence identity: Vip3A, Vip3B, and Vip3C. In this study, we report the construction of chimeras by exchanging domains between Vip3Aa and Vip3Ca, two proteins with marked specificity differences against lepidopteran pests. We found that some domain combinations made proteins insoluble or prone to degradation by trypsin as most abundant insect gut protease. The soluble and trypsin-stable chimeras, along with the parental proteins Vip3Aa and Vip3Ca, were tested against lepidopteran pests from different continents: Spodoptera exigua, Spodoptera littoralis, Spodoptera frugiperda, Helicoverpa armigera, Mamestra brassicae, Anticarsia gemmatalis, and Ostrinia furnacalis. The exchange of the Nt domain (188 N-terminal amino acids) had little effect on the stability and toxicity (equal or slightly lower) of the resulting chimeric protein against all insects except for S. frugiperda, for which the chimera with the Nt domain from Vip3Aa and the rest of the protein from Vip3Ca showed a significant increase in toxicity compared to the parental Vip3Ca. Chimeras with the C-terminal domain from Vip3Aa (from amino acid 510 of Vip3Aa to the Ct) with the central domain of Vip3Ca (amino acids 189–509 based on the Vip3Aa sequence) made proteins that could not be solubilized. Finally, the chimera including the Ct domain of Vip3Ca and the Nt and central domain from Vip3Aa was unstable. Importantly, an insect species tolerant to Vip3Aa but susceptible to Vip3Ca, such as Ostrinia furnacalis, was also susceptible to chimeras maintaining the Ct domain from Vip3Ca, in agreement with the hypothesis that the Ct region of the protein is the one conferring specificity to Vip3 proteins.
  • PublicationOpen Access
    The role of Chrysoperla carnea (Steph.) (neuroptera: Chrysopidae) as a potential dispersive agent of noctuid baculoviruses
    (MDPI, 2020) Gutiérrez Cárdenas, Oscar Giovanni; Adán, Ángeles; Beperet Arive, Inés; Medina, Pilar; Caballero Murillo, Primitivo; Garzón, Agustín; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Baculoviruses (BV) are highly effective against lepidopteran pests of economic importance such as Spodoptera exigua. The combined use of entomopathogens and macrobiological control agents requires the study of their relationships. Laboratory bioassays were developed to evaluate the interactions between the multiple nucleopolyhedroviruses of S. exigua (SeMNPV) and Autographa californica (AcMNPV), and the predator Chrysoperla carnea. The microscopic examination of predator’s excreta (larval drops and meconia) after the ingestion of BV-infected S. exigua revealed the presence of viral occlusion bodies (OBs). The reinfection of S. exigua larvae with BVs-contaminated excreta by using OBs water suspensions or by direct application both yielded high mortality values but different speed-of-kill results. Meconia killed before in suspensions due to their higher viral load and larval excretion drops did so in direct application due to their liquid nature and their easiness of consumption. The prey-mediated ingestion of SeMNPV and AcMNPV triggered slight effects in C. carnea, which were probably derived from the food nutritional quality. Chrysoperla carnea larvae did not discriminate between healthy and BV-infected S. exigua, while a preference was shown for S. exigua (healthy or infected) vs. Macrosiphum euphorbiae. Our findings present C. carnea, and particularly its larvae, as a promissory candidate for BV dispersion in the field.
  • PublicationOpen Access
    Vegetable waste extracts as enhancers of baculovirus infections
    (Elsevier, 2023) Martínez Inda, Blanca; Simón de Goñi, Oihane; Jiménez Moreno, Nerea; Esparza Catalán, Irene; Moler Cuiral, José Antonio; Caballero Murillo, Primitivo; Ancín Azpilicueta, Carmen; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute for Advanced Materials and Mathematics - INAMAT2
    Vegetable waste extracts (VWE) contain a great variety of antioxidants such as polyphenols, which have shown to potentiate baculovirus infections, making them ingredients for pest control ingredients. In the present study, the mortality enhancement of different vegetable extracts obtained from food residues when combined with baculoviruses was evaluated. Extracts from spent coffee (E2), rosehip (E17), asparagus (E28), artichoke (E29), beet stalks (E32) and banana peel (E37) were selected as they increased mortality of Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) in second instar S. littoralis larvae, when comparing with the virus inoculation alone. Extracts were assayed at 1 % w/v. In S. littoralis-SpliNPV system, the selected extracts reduced the median lethal concentration (LC50) of SpliNPV against second instar larvae. The E37 extract presented the highest potentiation, as it reduced the LC50 13.61 times, while the rest of the extracts presented LC50 reductions from 3.71 to 7.72-fold. In Spodoptera exigua-SeMNPV (Spodoptera exigua multiple nucleopolyhedrovirus) system, none of the extracts decreased the LC50 of SeMNPV. In contrast, in Spodoptera frugiperda-SfMNPV (Spodoptera frugiperda multiple nucleopolyhedrovirus) system, E2 showed the greatest potentiating effect. In the heterologous systems, none of the extracts tested increased the effective host range of SfMNPV, AcMNPV (Autographa californica multiple nucleopolyhedrovirus), and MbMNPV (Mamestra brassicae multiple nucleopolyhedrovirus) in second instar S. littoralis larvae. Thus, the viral enhancing effect of VWE was host-pathogen and instar dependent. However, the potentiation effect of the extracts could not be directly related with the antioxidants content of the extracts.
  • PublicationOpen Access
    Iflavirus covert infection increases susceptibility to nucleopolyhedrovirus disease in Spodoptera exigua
    (MDPI, 2020) Carballo Palos, Arkaitz; Williams, Trevor; Murillo Pérez, Rosa; Caballero Murillo, Primitivo; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación
    Naturally occurring covert infections in lepidopteran populations can involve multiple viruses with potentially different transmission strategies. In this study, we characterized covert infection by two RNA viruses, Spodoptera exigua iflavirus 1 (SeIV-1) and Spodoptera exigua iflavirus 2 (SeIV-2) (family Iflaviridae) that naturally infect populations of Spodoptera exigua, and examined their influence on susceptibility to patent disease by the nucleopolyhedrovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) (family Baculoviridae). The abundance of SeIV-1 genomes increased up to ten-thousand-fold across insect developmental stages after surface contamination of host eggs with a mixture of SeIV-1 and SeIV-2 particles, whereas the abundance of SeIV-2 remained constant across all developmental stages. Low levels of SeIV-2 infection were detected in all groups of insects, including those that hatched from surface-decontaminated egg masses. SeIV-1 infection resulted in reduced larval weight gain, and an unbalanced sex ratio, whereas larval developmental time, pupal weight, and adult emergence and fecundity were not significantly affected in infected adults. The inoculation of S. exigua egg masses with iflavirus, followed by a subsequent infection with SeMNPV, resulted in an additive effect on larval mortality. The 50% lethal concentration (LC50) of SeMNPV was reduced nearly 4-fold and the mean time to death was faster by 12 h in iflavirus-treated insects. These results suggest that inapparent iflavirus infections may be able to modulate the host response to a new pathogen, a finding that has particular relevance to the use of SeMNPV as the basis for biological pest control products.
  • PublicationOpen Access
    Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests
    (MDPI, 2020) Domínguez Arrizabalaga, Mikel; Villanueva San Martín, Maite; Escriche, Baltasar; Ancín Azpilicueta, Carmen; Caballero Murillo, Primitivo; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias
    Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and in the construction of transgenic crops to provide protection against main beetle pests. In this review, we provide an update on the activity of Bt toxins against coleopteran insects, as well as specific information about the structure and mode of action of coleopteran Bt proteins.