Caballero Murillo, Primitivo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Caballero Murillo
First Name
Primitivo
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Harnessing Chelonus inanitus for efficient Spodoptera spp. management: learning about production to explore roles in baculovirus transmission(Elsevier, 2025-03-01) Dáder, Beatriz; Morel, Ariel; Muñoz Labiano, Delia; Caballero Murillo, Primitivo; Medina, Pilar; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraControl of Spodoptera spp. (Lepidoptera: Noctuidae) crop pests has traditionally relied on heavy insecticide use. Baculoviruses (BV) from the genera Alphabaculovirus and Betabaculovirus offer effective, species-specific alternatives for managing their outbreaks. Joint use of BVs with natural enemies, such as parasitoids, could further enhance control of Spodoptera spp. by contributing to virus dispersion. In a series of experiments, we studied the optimal host age and parasitization duration of the endoparasitoid Chelonus inanitus L. (Hymenoptera: Braconidae) for parasitoid production, as well as the parasitoid preference and mechanical transmission of Spodoptera exigua and Spodoptera littoralis multiple nucleopolyhedroviruses (SeMNPV and SpliMNPV). We found that parasitoid progeny production was significantly lower when parasitized eggs were either too young (24 h) or too old (96 h), highlighting the importance of host egg age. Additionally, there was an increasing trend in parasitoid offspring production with longer parasitization exposure times, particularly at 6 and 24 h compared to shorter durations. Chelonus inanitus did not discriminate between SpliMNPV-contaminated and non-contaminated eggs, but had a remarkable preference for SeMNPV-contaminated eggs. The parasitoid effectively dispersed BVs, not only from BV-treated eggs to heathy ones by parasitization, but also, and even more efficiently, by the sole contact with a contaminated surface without eggs. Understanding complex BV-parasitoid interactions is crucial for developing integrated pest management strategies that maximize the efficacy of both parasites.Publication Open Access Synergy of lepidopteran nucleopolyhedroviruses AcMNPV and SpliNPV with insecticides(MDPI, 2020) Dáder, Beatriz; Aguirre Sánchez, Eduardo; Caballero Murillo, Primitivo; Medina, Pilar; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe joint use of baculoviruses and synthetic insecticides for integrated pest management requires the study of the additive, synergistic or antagonistic effects among them on pest mortality. Droplet bioassays were conducted with Autographa californica multiple nucleopolyhedrovirus (AcMNPV), Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) and seven insecticides (azadirachtin, Bacillus thuringiensis, cyantraniliprole, emamectin, metaflumizone, methoxyfenozide and spinetoram) on Spodoptera exigua and Spodoptera littoralis. The lethal concentrations LC50 and LC95 were calculated through probit regressions. Then, the sequential feeding of insecticides and nucleopolyhedroviruses was studied. Larvae were provided with the LC50 of one insecticide, followed by the LC50 of one nucleopolyhedrovirus 24 h later. The inverse order was also conducted. The insecticide LC50 and LC95 were higher for S. littoralis than for S. exigua. AcMNPV showed greater toxicity on S. exigua than SpliNPV on S. littoralis. Emamectin showed synergy with AcMNPV when the chemical was applied first, and metaflumizone and AcMNPV were synergistic regardless of the order of application, both from the first day of evaluation. SpliNPV was synergistic with azadirachtin and emamectin when it was applied first, but synergy was reached after 12–13 days. Excellent control is possible with the LC50 of azadirachtin, emamectin and metaflumizone in combination with nucleopolyhedroviruses, and merits further study as a means of controlling lepidopteran pests.Publication Open Access The parasitoid hyposoter didymator can transmit a broad host range baculovirus in a two host system(MDPI, 2023) Morel, Ariel; Leigh, Brendan; Muñoz Labiano, Delia; Caballero Murillo, Primitivo; Medina, Pilar; Dáder, Beatriz; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraHyposoter didymator (Thunberg) (Hymenoptera: Ichneumonidae) and baculovirus (BV) might be used jointly to provide effective control of the Spodoptera genus. The literature has mostly covered the safe compatibility between natural enemies and BV-based insecticides, but research on the potential dispersal of BV by natural enemies is lacking. Thus, the goal of this manuscript was to ascertain if H. didymator was able to disperse the broad host range of Autographa californica nucleopolyhedrovirus (AcMNPV) to Spodoptera littoralis and Spodoptera exigua in choice and non-choice conditions and whether the preference of the parasitoid by one of these noctuids could mediate this dispersion. It was previously needed to improve the rearing of the parasitoid in the laboratory, concerning the optimal host age and length of parasitization, parasitoid competition, and influence of parasitization on the longevity of females. The best rearing conditions for S. littoralis are collective parasitization of mature L3 larvae for 24 h, after at least one day of copulation. Hyposoter didymator transmits AcMNPV to both lepidopterans, but its efficiency is mediated by host preference and the pathogenicity of the BV in each host. In this particular case, H. didymator as well as AcMNPV showed a clear preference towards S. exigua.