Caballero Murillo, Primitivo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Caballero Murillo
First Name
Primitivo
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
39 results
Search Results
Now showing 1 - 10 of 39
Publication Open Access Sequence comparison between three geographically distinct Spodoptera frugiperda multiple nucleopolyhedrovirus isolates: detecting positively selected genes(Elsevier, 2011-01-14) Simón de Goñi, Oihane; Palma Dovis, Leopoldo; Beperet Arive, Inés; Muñoz Labiano, Delia; López Ferber, Miguel; Caballero Murillo, Primitivo; Williams, Trevor; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe complete genomic sequence of a Nicaraguan plaque purified Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) genotype SfMNPV-B was determined and compared to previously sequenced isolates from United States (SfMNPV-3AP2) and Brazil (SfMNPV-19). The genome of SfMNPV-B (132,954 bp) was 1623 bp and 389 bp larger than that of SfMNPV-3AP2 and SfMNPV-19, respectively. Genome size differences were mainly due to a deletion located in the SfMNPV-3AP2 egt region and small deletions and point mutations in SfMNPV-19. Nucleotide sequences were strongly conserved (99.35% identity) and a high degree of predicted amino acid sequence identity was observed. A total of 145 open reading frames (ORFs) were identified in SfMNPV-B, two of them (sf39a and sf110a) had not been previously identified in the SfMNPV-3AP2 and SfMNPV-19 genomes and one (sf57a) was absent in both these genomes. In addition, sf6 was not previously identified in the SfMNPV-19 genome. In contrast, SfMNPV-B and SfMNPV-19 both lacked sf129 that had been reported in SfMNPV-3AP2. In an effort to identify genes potentially involved in virulence or in determining population adaptations, selection pressure analysis was performed. Three ORFs were identified undergoing positive selection: sf49 (pif-3), sf57 (odv-e66b) and sf122 (unknown function). Strong selection for ODV envelope protein genes indicates that the initial infection process in the insect midgut is one critical point at which adaptation acts during the transmission of these viruses in geographically distant populations. The function of ORF sf122 is being examined.Publication Open Access A native variant of Chrysodeixis chalcites nucleopolyhedrovirus: the basis for a promising bioinsecticide for control of C. chalcites in Canary Islands' banana crops(Elsevier, 2013-08-13) Bernal Rodríguez, Alexandra; Williams, Trevor; Hernández Suárez, Estrella; Carnero, Aurelio; Caballero Murillo, Primitivo; Simón de Goñi, Oihane; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaChrysodeixis chalcites (Lepidoptera: Noctuidae) larvae cause up to 30% production loss in banana crops in the Canary Islands. Larvae of this species are susceptible to a nucleopolyhedrovirus (ChchNPV). This study aimed at evaluating the genetic diversity and bioinsecticidal activity of ChchNPV isolates collected from C. chalcites larvae in the Canary Islands. From a total 97 isolates collected in different banana greenhouses, restriction endonuclease analysis identified five genetic variants that differed slightly from ChchNPV isolates from Netherlands (ChchSNPV-NL) and Almería, Spain (ChchNPV-SP1). Physical maps revealed minimal differences at the genome level, mostly due to variation in the position/existence of restriction sites. ChchSNPV-TF1 was the most prevalent variant, representing 78% of isolates examined, and was isolated at all Canary Island sampling sites. This isolate was the most pathogenic isolate against C. chalcites second instars in terms of concentration-mortality metrics, compared to homologous variants or two heterologous viruses Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Anagrapha falcifera multiple nucleopolyhedrovirus (AnfaMNPV). ChchSNPV-TF1 was also one of the fastest killing variants although no differences were observed in occlusion body production among the different variants in second instars. We conclude that ChchSNPV-TF1 merits further evaluation as the basis for a biological insecticide for control of C. chalcites in banana crops in the Canary Islands.Publication Open Access Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda(Blackwell Science, 2003-10-17) Martínez Castillo, Ana Mabel; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza EkoizpenaCertain optical brighteners are effective UV protectants, and can improve the insecticidal activity of baculoviruses. We evaluated the effect of 10 optical brighteners, from four chemically different groups, on the insecticidal activity of a nucleopolyhedrovirus (SfMNPV) in third instar Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). The most effective optical brighteners were Blankophor BBH and Calcofluor M2R, both of which are stilbenes. The distyryl-biphenyl derivative, Tinopal CBS, had no effect, whereas the stilbenes, Blankophor CLE and Leucophor SAC and the styryl-benzenic derivative, Blankophor ER, resulted in a decrease in virus induced mortality compared to larvae infected with SfMNPV alone. Mixtures of SfMNPV + 0.1% Calcofluor M2R had relative potencies of 2.7, 6.5, and 61.6 in the second, third, and fourth instars, respectively. The mean time to death differed with instar, but was not affected by the addition of 0.1% Calcofluor M2R. Analysis of published studies indicated that the concentration of Calcofluor M2R-related stilbenes was positively correlated with the relative potency observed in mixtures with homologous NPVs. The average magnitude of optical brightener activity did not differ significantly between early instars of 10 species of Lepidoptera. We conclude that virus formulations containing optical brighteners may be valuable for control of late instar lepidopteran pests.Publication Open Access Superinfection exclusion in alphabaculovirus infections is concomitant with actin reorganization(American Society for Microbiology, 2014) Beperet Arive, Inés; Irons, Sarah L.; Simón de Goñi, Oihane; King, Linda A.; Williams, Trevor; Possee, Robert D.; López Ferber, Miguel; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaSuperinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses—AcMNPV and SfMNPV—but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses.Publication Open Access Bacmid expression of granulovirus enhancin En3 accumulates in cell soluble fraction to potentiate nucleopolyhedrovirus infection(MDPI, 2021) Ricarte Bermejo, Adriana; Simón de Goñi, Oihane; Fernández González, Ana Beatriz; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMABEnhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.Publication Open Access Effects of several UV-protective substances on the persistence of the insecticidal activity of the Alphabaculovirus of Chrysodeixis chalcites (ChchNPV-TF1) on banana (Musa acuminata, Musaceae, Colla) under laboratory and open-field conditions(Public Library of Science, 2021) Çakmak, Taylan; Simón de Goñi, Oihane; Kaydan, Mehmet Bora; Tange, Denis Achiri; González-Rodríguez, Agueda María; Piedra-Buena Díaz, Ana; Caballero Murillo, Primitivo; Hernández Suárez, Estrella; Institute for Multidisciplinary Research in Applied Biology - IMABAlphabaculovirus of Chrysodeixis chalcites (ChchNPV-TF1) has been investigated as a useful bioinsecticide against C. chalcites (Esper) (Lepidoptera: Noctuidae) in banana crops. This study investigated the effects of several substances on the persistence of ChchNPV-TF1 under field conditions in the Canary Islands. Natural photoprotective substances, such as moringa, cacao, green tea, benzopurpurine, charcoal, iron dioxide, benzimidazole, kaolinite, and bentonite, were first evaluated under laboratory conditions using a Crosslinker as UV light source at 200 J/cm(2). The photoprotective substances were divided into three groups: low protection (0-8%; kaolinite), intermediate protection (48-62%; green tea, moringa, bentonite and cacao) and high protection (87-100%; charcoal, iron ioxide). Benzopurpurine and benzimidazole did not provide any photoprotective effects. Two of the substances that yielded the best results, 1% cacao and 1% charcoal, were selected for the open-field experiment in a banana plantation. The persistence of ChchNPV-TF1 OBs (occlusion bodies) on leaf surfaces with sunlight exposure was analysed by comparing the initial mortality of 2(nd) instar C. chalcites larvae with the mortality observed at various intervals postapplication. The mortality rates decreased over time in all treatments and were always higher in the UV-protective substance-treated parcels. The 1% charcoal treatment exhibited the highest protection in both the laboratory and field experiments. No specific interference of UV-protective substances on the maximum photochemical efficiency of banana plants was observed under field conditions.Publication Open Access Determinant factors in the production of a co-occluded binary mixture of Helicoverpa armigera alphabaculovirus (HearNPV) genotypes with desirable insecticidal characteristics(Public Library of Science, 2016) Arrizubieta Celaya, Maite; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14065:RI1A co-occluded binary mixture of Helicoverpa armigera nucleopolyhedrovirus genotypes HearSP1B and HearLB6 at a 1:1 ratio (HearSP1B+HearLB6) was selected for the development of a virus-based biological insecticide, which requires an efficient large-scale production system. In vivo production systems require optimization studies in each host-virus pathosystem. In the present study, the effects of larval instar, rearing density, timing of inoculation, inoculum concentration and temperature on the production of HearSP1B+HearLB6 in its homologous host were evaluated. The high prevalence of cannibalism in infected larvae (40–87%) indicated that insects require individual rearing to avoid major losses in OB production. The OB production of recently molted fifth instars (7.0 x 109 OBs/larva), combined with a high prevalence of mortality (85.7%), resulted in the highest overall OB yield (6.0 x 1011 OBs/100 inoculated larvae), compared to those of third or fourth instars. However, as inoculum concentration did not influence final OB yield, the lowest concentration, LC80 (5.5 x 106 OBs/ml), was selected. Incubation temperature did not significantly influence OB yield, although larvae maintained at 30°C died 13 and 34 hours earlier than those incubated at 26°C and 23°C, respectively. We conclude that the efficient production of HearSP1B+HearLB6 OBs involves inoculation of recently molted fifth instars with a LC80 concentration of OBs followed by individual rearing at 30°C.Publication Open Access Vegetable waste extracts as enhancers of baculovirus infections(Elsevier, 2023) Martínez Inda, Blanca; Simón de Goñi, Oihane; Jiménez Moreno, Nerea; Esparza Catalán, Irene; Moler Cuiral, José Antonio; Caballero Murillo, Primitivo; Ancín Azpilicueta, Carmen; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute for Advanced Materials and Mathematics - INAMAT2Vegetable waste extracts (VWE) contain a great variety of antioxidants such as polyphenols, which have shown to potentiate baculovirus infections, making them ingredients for pest control ingredients. In the present study, the mortality enhancement of different vegetable extracts obtained from food residues when combined with baculoviruses was evaluated. Extracts from spent coffee (E2), rosehip (E17), asparagus (E28), artichoke (E29), beet stalks (E32) and banana peel (E37) were selected as they increased mortality of Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) in second instar S. littoralis larvae, when comparing with the virus inoculation alone. Extracts were assayed at 1 % w/v. In S. littoralis-SpliNPV system, the selected extracts reduced the median lethal concentration (LC50) of SpliNPV against second instar larvae. The E37 extract presented the highest potentiation, as it reduced the LC50 13.61 times, while the rest of the extracts presented LC50 reductions from 3.71 to 7.72-fold. In Spodoptera exigua-SeMNPV (Spodoptera exigua multiple nucleopolyhedrovirus) system, none of the extracts decreased the LC50 of SeMNPV. In contrast, in Spodoptera frugiperda-SfMNPV (Spodoptera frugiperda multiple nucleopolyhedrovirus) system, E2 showed the greatest potentiating effect. In the heterologous systems, none of the extracts tested increased the effective host range of SfMNPV, AcMNPV (Autographa californica multiple nucleopolyhedrovirus), and MbMNPV (Mamestra brassicae multiple nucleopolyhedrovirus) in second instar S. littoralis larvae. Thus, the viral enhancing effect of VWE was host-pathogen and instar dependent. However, the potentiation effect of the extracts could not be directly related with the antioxidants content of the extracts.Publication Open Access Genomic sequences of five Helicoverpa armigera nucleopolyhedrovirus genotypes from Spain that differ in their insecticidal properties(American Society for Microbiology, 2015) Arrizubieta Celaya, Maite; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaHelicoverpa armigera nucleopolyhedrovirus (HearNPV) has proved effective as the basis for various biological insecticides. Complete genome sequences of five Spanish HearNPV genotypes differed principally in the homologous regions (hrs) and the baculovirus repeat open reading frame (bro) genes, suggesting that they may be involved in the phenotypic differences observed among genotypes.Publication Open Access A novel binary mixture of Helicoverpa armigera single nucleopolyhedrovirus genotypic variants has improved insecticidal characteristics for control of cotton bollworms(American Society for Microbiology, 2015) Arrizubieta Celaya, Maite; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14065:RI1The genotypic diversity of two Spanish isolates of Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) was evaluated with the aim of identifying mixtures of genotypes with improved insecticidal characteristics for control of the cotton bollworm. Two genotypic variants, HearSP1A and HearSP1B, were cloned in vitro from the most pathogenic wild-type isolate of the Iberian Peninsula, HearSNPV-SP1 (HearSP1-wt). Similarly, six genotypic variants (HearLB1 to -6) were obtained by endpoint dilution from larvae collected from cotton crops in southern Spain that died from virus disease during laboratory rearing. Variants differed significantly in their insecticidal properties, pathogenicity, speed of kill, and occlusion body (OB) production (OBs/larva). HearSP1B was ~3-fold more pathogenic than HearSP1-wt and the other variants. HearLB1, HearLB2, HeaLB5, and HearLB6 were the fastest-killing variants. Moreover, although highly virulent, HearLB1, HearLB4, and HearLB5 produced more OBs/ larva than did the other variants. The co-occluded HearSP1B:LB6 mixture at a 1:1 proportion was 1.7- to 2.8-fold more pathogenic than any single variant and other mixtures tested and also killed larvae as fast as the most virulent genotypes. Serial passage resulted in modified proportions of the component variants of the HearSP1B:LB6 co-occluded mixture, suggesting that transmissibility could be further improved by this process. We conclude that the improved insecticidal phenotype of the HearSP1B:LB6 co-occluded mixture underlines the utility of the genotypic variant dissection and reassociation approach for the development of effective virus-based insecticides.