Gandía Aguado, David

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gandía Aguado

First Name

David

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration
    (Elsevier, 2024-09-07) Gandía Aguado, David; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Royo Silvestre, Isaac; Cruz Blas, Carlos Aristóteles de la; Tainta Ausejo, Santiago; Gómez Polo, Cristina; Ciencias; Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    Electromagnetic vibrational harvesters are low-cost devices featuring high-power densities and robust structures, often used for capturing the energy of environmental vibrations (civil infrastructures, transportation, human motion, etc.,). Based on Faraday's law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. However, the practical implementation of this type of vibrational harvester is currently limited due to the reduced generated power under low-frequency vibrations. In this work, an electromagnetic vibrational harvester is experimentally characterized and analyzed employing magnetic circuit analysis. The harvester consists of a ferromagnetic U-shaped cantilever, a NdFeB magnet and a ferrite magnet used as ¿magnetic tip mass¿ to enhance the magnetic flux changes under vibrations of frequency < 100 Hz. For this configuration, an experimental voltage of ¿ 1.2 V peak-to-peak (open circuit) was obtained at a resonant frequency of 77 Hz, enabling the subsequent electronic rectification stage. Additionally, Finite Element Method (FEM) is used to explore different design possibilities including the modeling of complex geometries, mechanical properties and non-linear magnetic materials, enabling the tuning of the resonance frequency from 51 to 77 Hz, keeping constant the induced voltage.
  • PublicationOpen Access
    Fast calculation methods for the magnetic field of particle lattices
    (AIP Publishing, 2025-02-14) Royo Silvestre, Isaac; Gandía Aguado, David; Beato López, Juan Jesús; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    With the rise of 3D printing and composite materials, components comprising dispersed magnetic particles have become more interesting due to the possibility to design magnetic elements of any shape with varying amounts of the actual magnetic material. However, quick and easy calculation methods are needed to design these components enabling the selection of the optimum required percentage of magnetic particles (millimeter parts contain billions of micro-sized particles). This work proposes a semi-analytical iterative method for the estimation of the magnetic field generated by magnetic composites formed by embedded magnetic particles. The model is compared in terms of accuracy and calculation speed with finite element analysis and the average magnetization model of the magnetic composite. The results are finally supported by the comparison with experimental measurements of the weak magnetic field generated by a magnetic particle lattice.
  • PublicationOpen Access
    Exploring the complex interplay of anisotropies in magnetosomes of magnetotactic bacteria
    (American Chemical Society, 2025-04-14) Gandía Aguado, David; Marcano, Lourdes; Gandarias, Lucía; Gubieda, Alicia G.; García-Prieto, Ana; Fernández Barquín, Luis; Espeso, José Ignacio; Martín Jefremovas, E.; Orue, Iñaki; Abad Díaz de Cerio, Ana; Fernández-Gubieda, María Luisa; Alonso Masa, Javier; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Magnetotactic bacteria (MTB) are at the forefront of interest for biophysics applications, especially in cancer treatment. Magnetosomes biomineralized by these bacteria are high-quality magnetic nanoparticles that form chains inside the MTB through a highly reproducible, naturally driven process. In particular, Magnetovibrio blakemorei and Magnetospirillum gryphiswaldense MTB exhibit distinct magnetosome morphologies: truncated hexa-octahedral and cuboctahedral shapes, respectively. Despite having identical compositions (magnetite, Fe3O4) and dimensions within a similar size range, their effective uniaxial anisotropies significantly differ at room temperature, with M. blakemorei exhibiting ∼25 kJ/m3 and M. gryphiswaldense ∼ 11 kJ/m3. This prominent anisotropy variance provides a unique opportunity to explore the role of magnetic anisotropy contributions in the magnetic responses of these magnetite-based nanoparticles. This study systematically investigates these responses by examining static magnetization as a function of temperature (M vs T, 5 mT) and magnetic field (M vs μ0H, up to 1 T). Above the Verwey transition temperature (∼110 K), the effective anisotropy is dominated by the shape anisotropy contribution, notably increasing the coercivity for M. blakemorei by up to twofold compared to M. gryphiswaldense. However, below this temperature, the effective uniaxial anisotropy rapidly increases in a nonmonotonic way, significantly changing the magnetic behavior. Computational simulations using a dynamic Stoner–Wohlfarth model provide insights into these phenomena, enabling careful interpretation of experimental data. According to our simulations, below the Verwey temperature, a uniaxial magnetocrystalline contribution progressively emerges, peaking around 22–24 kJ/m3 at 5 K. Our study reveals the complex evolution of magnetocrystalline contributions, which dominate the magnetic response of magnetosomes below the Verwey temperature. This demonstrates the profound impact of anisotropic properties on the magnetic behaviors and applications of magnetite-based nanoparticles and highlights the exceptional utility of magnetosomes as ideal model systems for studying the complex interplay of anisotropies in magnetite-based nanoparticles.
  • PublicationOpen Access
    Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents
    (Wiley, 2019) Gandía Aguado, David; Gandarias, Lucía; Rodrigo, Irati; Robles García, Joshua; Das, Raja; Garayo Urabayen, Eneko; García, José Ángel; Ciencias; Zientziak
    Magnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.
  • PublicationOpen Access
    U-shape magnetostrictive harvester: design and experimental validation
    (IEEE, 2024-07-05) Gandía Aguado, David; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Royo Silvestre, Isaac; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Electromagnetic vibrational harvesters stand out due to their high-power density, long-life robust structure and low-cost design. Moreover, they can be designed using magnetostrictive materials. The mechanical vibrations cause stress on the magnetostrictive material, leading to variations in its magnetization. This, in turn, induces an electromotive force (EMF) in a well-designed pick-up coil system, thereby transforming mechanical energy into electrical energy. In spite of the potentiality of these electromagnetic harvesters, their practical implementation is limited due to the difficulties in the design optimization in terms of the device dimensions, effective stresses on the magnetostrive material, distribution and magnetic field strength of the permanent magnets and pick-up coil characteristics. Finite Element Methods (FEM) enable the estimation of the induced voltage and thus the output power as a function of harvester design parameters, allowing us to experiment with different configurations and identify optimal parameters.