Cadenas-Sánchez, Cristina
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Cadenas-Sánchez
First Name
Cristina
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Effects of exercise on bone marrow adipose tissue in children with overweight/obesity: role of liver fat(Oxford University Press, 2024-08-07) Labayen Goñi, Idoia; Cadenas-Sánchez, Cristina; Idoate, Fernando; Gracia-Marco, Luis; Medrano Echeverría, María; Alfaro-Magallanes, Víctor Manuel; Alcántara Alcántara, Juan Manuel; Rodríguez Vigil, Beatriz; Osés Recalde, Maddi; Ortega, Francisco B.; Ruiz, Jonatan R.; Cabeza Laguna, Rafael; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias de la Salud; Osasun Zientziak; Institute of Smart Cities - ISC; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako GobernuaContext: Exercise reduces adiposity, but its influence on bone marrow fat fraction (BMFF) is unknown; nor is it known whether a reduction in liver fat content mediates this reduction. Objectives: This work aimed to determine whether incorporating exercise into a lifestyle program reduces the lumbar spine (LS) BMFF and to investigate whether changes in liver fat mediate any such effect.Methods Ancillary analysis of a 2-arm, parallel, nonrandomized clinical trial was conducted at primary care centers in Vitoria-Gasteiz, Spain. A total of 116 children with overweight/obesity were assigned to a 22-week family-based lifestyle program (control group [n = 57]) or the same program plus an exercise intervention (exercise group [n = 59]). The compared interventions consisted of a family-based lifestyle program (two 90-minute sessions/month) and the same program plus supervised exercise (three 90-minute sessions/week). The primary outcome examined was the change in LS-BMFF between baseline and 22 weeks, as estimated by magnetic resonance imaging. The effect of changes in hepatic fat on LS-BMFF were also recorded.Results Mean weight loss difference between groups was 1.4 +/- 0.5 kg in favor of the exercise group. Only the children in the exercise group experienced a reduction in LS-BMFF (effect size [Cohen d] -0.42; CI, -0.86 to -0.01). Importantly, 40.9% of the reductions in LS-BMFF were mediated by changes in percentage hepatic fat (indirect effect: beta=-0.104; 95% CI, -0.213 to -0.019). The effect of changes in hepatic fat on LS-BMFF was independent of weight loss.Conclusion The addition of exercise to a family-based lifestyle program designed to reduce cardiometabolic risk improves bone health by reducing LS-BMFF in children with overweight or obesity. This beneficial effect on bone marrow appears to be mediated by reductions in liver fat.Publication Open Access Differences in areal bone mineral density between metabolically healthy and unhealthy overweight/obese children: the role of physical activity and cardiorespiratory fitness(Springer Nature, 2019) Ubago Guisado, Esther; Gracia-Marco, Luis; Medrano Echeverría, María; Cadenas-Sánchez, Cristina; Arenaza Etxeberría, Lide; Migueles, Jairo H.; Mora González, José; Tobalina, Ignacio; Escolano Margarit, María Victoria; Osés Recalde, Maddi; Martín Matillas, Miguel; Labayen Goñi, Idoia; Ortega, Francisco B.; Institute on Innovation and Sustainable Development in Food Chain - ISFOODObjectives: To examine whether areal bone mineral density (aBMD) differs between metabolically healthy (MHO) and unhealthy (MUO) overweight/obese children and to examine the role of moderate-to-vigorous physical activity (MVPA) and cardiorespiratory fitness (CRF) in this association. Methods: A cross-sectional study was developed in 188 overweight/obese children (10.4 ± 1.2 years) from the ActiveBrains and EFIGRO studies. Participants were classified as MHO or MUO based on Jolliffe and Janssen’s metabolic syndrome cut-off points for triglycerides, glucose, high-density cholesterol and blood pressure. MVPA and CRF were assessed by accelerometry and the 20-m shuttle run test, respectively. Body composition was measured by dual-energy X-ray absorptiometry. Results: In model 1 (adjusted for sex, years from peak high velocity, stature and lean mass), MHO children had significantly higher aBMD in total body less head (Cohen’s d effect size, ES = 0.34), trunk (ES = 0.43) and pelvis (ES = 0.33) than MUO children. These differences were attenuated once MVPA was added to model 1 (model 2), and most of them disappeared once CRF was added to the model 1 (model 3). Conclusions: This novel research shows that MHO children have greater aBMD than their MUO peers. Furthermore, both MVPA and more importantly CRF seem to partially explain these findings.Publication Open Access Associations between the adherence to the Mediterranean diet and cardiorespiratory fitness with total and central obesity in preschool children: the PREFIT project(Springer, 2018) Labayen Goñi, Idoia; Arenaza Etxeberría, Lide; Medrano Echeverría, María; García, Natalia; Cadenas-Sánchez, Cristina; Ortega, Francisco B.; Ciencias de la Salud; Osasun ZientziakPurpose: Early recognition of risk factors associated with overweight/obesity is animportant step towards preventing long-term health consequences. The aim of the current study was to examine the associations of the adherence to the Mediterranean dietary pattern (MDP) and cardiorespiratory fitness (CRF) with adiposity in preschool children from thenorth of Spain. Methods: The adherence to the MDP (KIDMED), CRF (20-m shuttle run test), total (BMI) and central (waist circumference) adiposity and socio-demographic factors were assessed in 619 children (48.6% girls) who were on average 4.7 years old. Results: Higher MDP index (P < 0.05) and CRF levels (P < 0.01) were significantly related to lower waist circumference. CRF was inversely associated with BMI (P <= 0.001), yet no significant association was observed between MDP and BMI. Children not having high CRF levels and high MDP (i.e., non-upper sex-specific tertile of CRF or MDP, respectively) had the highest waist circumference. Conclusions: Our findings support that higher adherence to the MDP and higher CRF are associated with lower waist circumference in preschool children, pointing them as relevant modifiable factors to be targeted by educational strategies aiming to prevent central obesity and later obesity-related comorbidities.Publication Open Access Effects of an exercise program on brain health outcomes for children with overweight or obesity: the ActiveBrains Randomized Clinical Trial(JAMA, 2022) Ortega, Francisco B.; Mora González, José; Cadenas-Sánchez, Cristina; Esteban Cornejo, Irene; Migueles, Jairo H.; Solís Urra, Patricio; Verdejo Román, Juan; Rodríguez Ayllon, María; Molina García, Pablo; Ruiz, Jonatan R.; Martínez Vizcaíno, Vicente; Hillman, Charles H.; Erickson, Kirk I.; Kramer, Arthur F.; Labayen Goñi, Idoia; Catena, Andrés; Ciencias de la Salud; Osasun Zientziak; Institute on Innovation and Sustainable Development in Food Chain - ISFOODIMPORTANCE Pediatric overweight and obesity are highly prevalent across the world, with implications for poorer cognitive and brain health. Exercise might potentially attenuate these adverse consequences. OBJECTIVES To investigate the effects of an exercise program on brain health indicators, including intelligence, executive function, academic performance, and brain outcomes, among children with overweight or obesity and to explore potential mediators and moderators of the main effects of exercise. DESIGN, SETTING, AND PARTICIPANTS All preexercise and postexercise data for this 20-week randomized clinical trial of 109 children aged 8 to 11 years with overweight or obesity were collected from November 21, 2014, to June 30, 2016, with neuroimaging data processing and analyses conducted between June 1, 2017, and December 20, 2021. All 109 children were included in the intention-to-treat analyses; 90 children (82.6%) completed the postexercise evaluation and attended 70% or more of the recommended exercise sessions and were included in per-protocol analyses. INTERVENTIONS All participants received lifestyle recommendations. The control group continued their usual routines, whereas the exercise group attended a minimum of 3 supervised 90-minute sessions per week in an out-of-school setting. MAIN OUTCOMES AND MEASURES Intelligence, executive function (cognitive flexibility, inhibition, and working memory), and academic performance were assessed with standardized tests, and hippocampal volume was measured with magnetic resonance imaging. RESULTS The 109 participants included 45 girls (41.3%); participants had a mean (SD) body mass index of 26.8 (3.6) and a mean (SD) age of 10.0 (1.1) years at baseline. In per-protocol analyses, the exercise intervention improved crystallized intelligence, with the exercise group improving from before exercise to after exercise (mean z score, 0.62 [95% CI, 0.44-0.80]) compared with the control group (mean z score, –0.10 [95% CI, –0.28 to 0.09]; difference between groups, 0.72 SDs [95% CI, 0.46-0.97]; P < .001). Total intelligence also improved significantly more in the exercise group (mean z score, 0.69 [95% CI, 0.48-0.89]) than in the control group (mean z score, 0.07 [95% CI, –0.14 to 0.28]; difference between groups, 0.62 SDs [95% CI, 0.31-0.91]; P < .001). Exercise also positively affected a composite score of cognitive flexibility (mean z score: exercise group, 0.25 [95% CI, 0.05-0.44]; control group, –0.17 [95% CI, –0.39 to 0.04]; difference between groups, 0.42 SDs [95% CI, 0.13-0.71]; P = .005). These main effects were consistent in intention-to-treat analyses and after multiple-testing correction. There was a positive, small-magnitude effect of exercise on total academic performance (mean z score: exercise group, 0.31 [95% CI, 0.18-0.44]; control group, 0.10 [95% CI, –0.04 to 0.24]; difference between groups, 0.21 SDs [95% CI, 0.01-0.40]; P = .03), which was partially mediated by cognitive flexibility. Inhibition, working memory, hippocampal volume, and other brain magnetic resonance imaging outcomes studied were not affected by the exercise program. The intervention increased cardiorespiratory fitness performance as indicated by longer treadmill time to exhaustion (mean z score: exercise group, 0.54 [95% CI, 0.27-0.82]; control group, 0.13 [95% CI, –0.16 to 0.41]; difference between groups, 0.42 SDs [95% CI, 0.01-0.82]; P = .04), and these changes in fitness mediated some of the effects (small percentage of mediation [approximately 10%-20%]). The effects of exercise were overall consistent across the moderators tested, except for larger improvements in intelligence among boys compared with girls. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, exercise positively affected intelligence and cognitive flexibility during development among children with overweight or obesity. However, the structural and functional brain changes responsible for these improvements were not identified. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02295072