Person:
Garayo Urabayen, Eneko

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Garayo Urabayen

First Name

Eneko

person.page.departamento

Física

ORCID

0000-0002-3144-7898

person.page.upna

811381

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Magnetic binary encoding system based on 3D printing and GMI detection prototype
    (Elsevier, 2022) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Aresti Bartolomé, Maite; Soria Picón, Eneko; Pérez de Landazábal Berganzo, José Ignacio; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Zientziak; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, the feasibility of a magnetic binary encoding system using 3D printing technology is analyzed. The study has a double interest, that is, the possibility of printing a 3D piece that contains the codified information and the development of a system for its decoding. For this purpose, magnetic nanoparticles (magnetite Fe3O4) were embedded in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL). Similar to a conventional barcode, a rectangular piece with an alternating pattern of strips with absence (only polymer) and a 5 wt% of embedded magnetic nanoparticles was 3D printed employing the Fused Deposition Modelling tech- nique (FDM). The information was decoded by means of a Giant Magnetoimpedance (GMI) sensor-based pro- totype, by scanning the surface of the piece and measuring the changes in the magnetic field. As sensor nucleus, an amorphous soft magnetic wire of nominal composition (Co0.94 Fe0.06)72.5 Si12.5 B15 was employed. The decoding prototype incorporates a homemade electronic sensor interface that permits, at the time, the GMI sensor excitation and the subsequent signal conditioning to optimize its response. The output signal enables the detection of the magnetite nanoparticles and the magnetic decoding of the encoded information (“1” and “0”, presence or absence of the magnetic nanoparticles, respectively).