Publication:
Magnetic binary encoding system based on 3D printing and GMI detection prototype

Consultable a partir de

Date

2022

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019–107258RB-C32/ES/recolecta

Abstract

In this work, the feasibility of a magnetic binary encoding system using 3D printing technology is analyzed. The study has a double interest, that is, the possibility of printing a 3D piece that contains the codified information and the development of a system for its decoding. For this purpose, magnetic nanoparticles (magnetite Fe3O4) were embedded in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL). Similar to a conventional barcode, a rectangular piece with an alternating pattern of strips with absence (only polymer) and a 5 wt% of embedded magnetic nanoparticles was 3D printed employing the Fused Deposition Modelling tech- nique (FDM). The information was decoded by means of a Giant Magnetoimpedance (GMI) sensor-based pro- totype, by scanning the surface of the piece and measuring the changes in the magnetic field. As sensor nucleus, an amorphous soft magnetic wire of nominal composition (Co0.94 Fe0.06)72.5 Si12.5 B15 was employed. The decoding prototype incorporates a homemade electronic sensor interface that permits, at the time, the GMI sensor excitation and the subsequent signal conditioning to optimize its response. The output signal enables the detection of the magnetite nanoparticles and the magnetic decoding of the encoded information (“1” and “0”, presence or absence of the magnetic nanoparticles, respectively).

Keywords

3D printing, Polymer-matrix composites, Binary encoding information, GMI effect, Magnetic sensor, Electronic sensor interface

Department

Institute for Advanced Materials and Mathematics - INAMAT2 / Institute of Smart Cities - ISC / Ciencias / Ingeniería Eléctrica, Electrónica y de Comunicación / Zientziak / Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work has been funded by the Gobierno de Navarra - Departamento de Desarrollo Económico within the framework of the Project: “Advanced Manufacturing of Electronics, AMELEC”. It has also been partially funded by the Spanish Government - Ministerio Ciencia-Innovación (PID2019–107258RB-C32 of MCIN/AEI/10.13039/501100011033). Open access funding provided by Universidad Pública de Navarra. The authors also want to acknowledge the Technological Center specialized in mobility and mechatronics of Navarra (NAITEC), for supplying the 3D printed piece and Prof. M. Vázquez (ICMM, Madrid Spain) for kindly supplying the soft magnetic wires.

© 2022 The Author(s). This is an open access article under the CC BY-NC-ND license

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.