Garayo Urabayen, Eneko

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Garayo Urabayen

First Name

Eneko

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 21
  • PublicationOpen Access
    Magnetic binary encoding system based on 3D printing and GMI detection prototype
    (Elsevier, 2022) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Aresti Bartolomé, Maite; Soria Picón, Eneko; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, the feasibility of a magnetic binary encoding system using 3D printing technology is analyzed. The study has a double interest, that is, the possibility of printing a 3D piece that contains the codified information and the development of a system for its decoding. For this purpose, magnetic nanoparticles (magnetite Fe3O4) were embedded in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL). Similar to a conventional barcode, a rectangular piece with an alternating pattern of strips with absence (only polymer) and a 5 wt% of embedded magnetic nanoparticles was 3D printed employing the Fused Deposition Modelling tech- nique (FDM). The information was decoded by means of a Giant Magnetoimpedance (GMI) sensor-based pro- totype, by scanning the surface of the piece and measuring the changes in the magnetic field. As sensor nucleus, an amorphous soft magnetic wire of nominal composition (Co0.94 Fe0.06)72.5 Si12.5 B15 was employed. The decoding prototype incorporates a homemade electronic sensor interface that permits, at the time, the GMI sensor excitation and the subsequent signal conditioning to optimize its response. The output signal enables the detection of the magnetite nanoparticles and the magnetic decoding of the encoded information (“1” and “0”, presence or absence of the magnetic nanoparticles, respectively).
  • PublicationOpen Access
    Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents
    (Wiley, 2019) Gandía Aguado, David; Gandarias, Lucía; Rodrigo, Irati; Robles García, Joshua; Das, Raja; Garayo Urabayen, Eneko; García, José Ángel; Ciencias; Zientziak
    Magnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.
  • PublicationEmbargo
    Boosting Li-S batteries through the synergistic effect of recycled ferrites and external magnetic induction
    (Elsevier, 2025-02-01) Bonilla, Álvaro; Jiménez Blasco, Uxua; Gómez-Cámer, Juan Luis; Garayo Urabayen, Eneko; Pérez de Landazábal Berganzo, José Ignacio; Caballero, Álvaro; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua, PC003-04 3D-MAGNET
    Despite being considered one of the most promising energy storage technologies, lithium-sulfur batteries (LSBs) are limited in terms of commercialization by the shuttle effect and slow reaction kinetics. In this work, we demonstrate for the first time that the use of recycled ferrite in conjunction with an external magnetic field generated by a permanent magnet can enhance the reaction kinetics and the adsorption of polysulfides (LiPSs), and hence the electrochemical stability. An in-depth kinetic study shows that under the effect of an external magnetic field, the electrode has lower polarization, a higher Li+ diffusion coefficient and a lower activation energy between electrochemical stages. The electrode also has a capacity retention up to 40 % higher and half the capacity loss per cycle at a high rate of 1C. At an ultra-high rate of 10C, the electrode has a capacity of 507 mAh g−1 after 150 cycles and an areal capacity of up to 3 mAh cm−2 at an ultra-high loading of 13 mg cm−2. In addition to the promising results observed in electrochemical terms, our approach is also more sustainable due to the use of a recycled electronic material obtained via dry milling, thereby avoiding the use of fossil carbons.
  • PublicationOpen Access
    Fe3O4-SiO2 mesoporous core/shell nanoparticles for magnetic field-induced ibuprofen-controlled release
    (American Chemical Society, 2022-12-23) García Rodríguez, Lucía; Garayo Urabayen, Eneko; López Ortega, Alberto; Galarreta Rodríguez, Itziar; Cervera Gabalda, Laura María; Cruz Quesada, Guillermo; Cornejo Ibergallartu, Alfonso; Garrido Segovia, Julián José; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2020; Gobierno de Navarra / Nafarroako Gobernua
    Hybrid magnetic nanoparticles made up of an iron oxide, Fe3O4, core and a mesoporous SiO2 shell with high magnetization and a large surface area were proposed as an efficient drug delivery platform. The core/shell structure was synthesized by two seed-mediated growth steps combining solvothermal and sol—gel approaches and using organic molecules as a porous scaffolding template. The system presents a mean particle diameter of 30(5) nm (9 nm magnetic core diameter and 10 nm silica shell thickness) with superparamagnetic behavior, saturation magnetization of 32 emu/g, and a significant AC magnetic-field-induced heating response (SAR = 63 W/gFe3O4, measured at an amplitude of 400 Oe and a frequency of 307 kHz). Using ibuprofen as a model drug, the specific surface area (231 m2/g) of the porous structure exhibits a high molecule loading capacity (10 wt %), and controlled drug release efficiency (67%) can be achieved using the external AC magnetic field for short time periods (5 min), showing faster and higher drug desorption compared to that of similar stimulus-responsive iron oxide-based nanocarriers. In addition, it is demonstrated that the magnetic field-induced drug release shows higher efficiency compared to that of the sustained release at fixed temperatures (47 and 53% for 37 and 42 °C, respectively), considering that the maximum temperature reached during the exposure to the magnetic field is well below (31 °C). Therefore, it can be hypothesized that short periods of exposure to the oscillating field induce much greater heating within the nanoparticles than in the external solution.
  • PublicationOpen Access
    Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization
    (Taylor & Francis, 2020) Rodrigo, Irati; Castellanos Rubio, Idoia; Garayo Urabayen, Eneko; Arriortua, Oihane K.; Insausti, Maite; Ciencias; Zientziak
    Aim: The Specific Absorption Rate (SAR) is the key parameter to optimize the effectiveness of magnetic nanoparticles in magnetic hyperthermia. AC magnetometry arises as a powerful technique to quantify the SAR by computing the hysteresis loops' area. However, currently available devices produce quite limited magnetic field intensities, below 45mT, which are often insufficient to obtain major hysteresis loops and so a more complete and understandable magneticcharacterization. This limitation leads to a lack of information concerning some basic properties, like the maximum attainable (SAR) as a function of particles' size and excitation frequencies, or the role of the mechanical rotation in liquid samples. Methods: To fill this gap, we have developed a versatile high field AC magnetometer, capable of working at a wide range of magnetic hyperthermia frequencies (100 kHz–1MHz) and up to field intensities of 90mT. Additionally, our device incorporates a variable temperature system for continuous measurements between 220 and 380 K. We have optimized the geometrical properties of the induction coil that maximize the generated magnetic field intensity. Results: To illustrate the potency of our device, we present and model a series of measurements performed in liquid and frozen solutions of magnetic particles with sizes ranging from 16 to 29 nm. Conclusion: We show that AC magnetometry becomes a very reliable technique to determine the effective anisotropy constant of single domains, to study the impact of the mechanical orientation in the SAR and to choose the optimal excitation parameters to maximize heating production under human safety limits.
  • PublicationOpen Access
    Nanoflowers versus magnetosomes: comparison between two promising candidates for magnetic hyperthermia therapy
    (IEEE, 2021) Jefremovas, Elizabeth M.; Gandarias, Lucía; Rodrigo, Irati; Marcano, Lourdes; Gruttner, Cordula; García, José Ángel; Garayo Urabayen, Eneko; Orue, Iñaki; García-Prieto, Ana; Muela, Alicia; Fernández-Gubieda, María Luisa; Alonso Masa, Javier; Fernández Barquín, Luis; Ciencias; Zientziak
    Magnetic Fluid Hyperthermia mediated by iron oxide nanoparticles is one of the mostpromising therapies for cancer treatment. Among the different candidates, magnetite and maghemite nanoparticles have revealed to be some of the most promising candidates due to both their performance andtheir biocompatibility. Nonetheless, up to date, the literature comparing the heating efficiency of magnetiteand maghemite nanoparticles of similar size is scarce. To fill this gap, here we provide a comparison between commercial Synomag Nanoflowers (pure maghemite) and bacterial magnetosomes (pure magnetite)synthesized by the magnetotactic bacterium Magnetospirillum gryphiswaldenseof〈D〉 ≈40–45 nm. Bothtypes of nanoparticles exhibit a high degree of crystallinity and an excellent degree of chemical purity andstability. The structural and magnetic properties in both nanoparticle ensembles have been studied by meansof X–Ray Diffraction, Transmission Electron Microscopy, X–Ray Absorption Spectroscopy, and SQUIDmagnetometry. The heating efficiency has been analyzed in both systems using AC magnetometry at severalfield amplitudes (0–88 mT) and frequencies (130, 300, and 530 kHz).
  • PublicationOpen Access
    Magnetically activated 3D printable polylactic acid/polycaprolactone/magnetite composites for magnetic induction heating generation
    (Springer, 2023) Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Beato López, Juan Jesús; La Roca, Paulo Matías; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Additive manufacturing technology has attracted the attention of industrial and technological sectors due to the versatility of the design and the easy manufacture of structural and functional elements based on composite materials. The embedding of magnetic nanoparticles in the polymeric matrix enables the development of an easy manufacturing process of low-cost magnetically active novel polymeric composites. In this work, we report a series of magnetic composites prepared by solution casting method combining 5 to 60 wt.% of 140 ± 50 nm commercial Fe3O4 nanoparticles, with a semi-crystalline, biocompatible, and biodegradable polymeric blend made of polylactic acid (PLA) and polycaprolactone (PCL). The composites were extruded, obtaining 1.5 ± 0.2 mm diameter continuous and flexible filaments for fused deposition modelling 3D printing. The chemical, magnetic, and calorimetric properties of the obtained filaments were investigated by differential scanning calorimetry, thermogravimetric analysis, magnetometry, and scanning electron microscopy. Furthermore, taking advantage of the magnetic character of the filaments, their capability to generate heat under the application of low-frequency alternating magnetic fields (magnetic induction heating) was analyzed. The obtained results expose the versatility of these easy manufacturing and low-cost filaments, where selecting a desired composition, the heating capacity can be properly adjusted for those applications where magnetic induction plays a key role (i.e., magnetic hyperthermia, drug release, heterogeneous catalysis, water electrolysis, gas capture, or materials synthesis).
  • PublicationOpen Access
    Martensitic transformation controlled by electromagnetic field: from experimental evidence to wireless actuator applications
    (Elsevier, 2022) Garayo Urabayen, Eneko; La Roca, Paulo Matías; Gómez Polo, Cristina; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua
    Mechanical actuators based on shape memory alloys (SMA) are becoming a key component in the development of novel soft robotic applications and surgically implantable devices. Their working principle relies in the temperature induced martensitic transformation (MT), which is responsible of the actuation mechanism. In this work, we found experimental evidence to show that the martensitic transformation can be controlled by electromagnetic field (EF) by a wireless process in ferromagnetic shape memory alloys. It is shown that the martensitic transformation can be driven by an external EF (frequency 45 kHz) while the specific absorption rate (SAR), which was determined through real-time dynamic magnetization measurements, allows the instantaneous monitoring of the transformation evolution. On the basis of the obtained results, we propose a strategy to achieve a battery-free wireless SMA actuator that can be remotely controlled. This concept can be applicable to other SMA material that exhibit a similar magneto-structural phase transition
  • PublicationOpen Access
    Modulating photocatalytic activity of nitrogen doped TiO2 nanoparticles via magnetic field
    (Elsevier, 2024-07-30) Gómez Polo, Cristina; Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The effect of the magnetic field on the photocatalytic activity of TiO2-based nanoparticles is analyzed using a magnetically-assisted photoreactor with permanent magnets to generate a controlled uniform magnetic field, B (¿82 mT). Nitrogen doped TiO2 nanoparticles (sizes around 10 nm) were synthesized through a solvothermal method employing Ti(IV) butoxide and HNO3 (x = 0, 0.5, 1, 1.5 and 2 mL) as precursors and their structural, optical and magnetic properties were analyzed. Specifically, nitrogen doping is confirmed through Hard X-ray Photoelectron Spectroscopy (HAXPES) in those samples synthesized with low HNO3 concentrations (x = 0.5, 1). The correlation between spin polarization (magnetic susceptibility) and visible photocatalytic activity (methyl orange as a model organic pollutant) is particularly analyzed. Surprisingly, opposite effects of the magnetic field on the photocatalytic performance are found in the visible range (above 400 nm) or under UV-Vis irradiation (decrease and increase in the photocatalytic activity, respectively, under magnetic field). The Langmuir-Hinshelwood model allows us to conclude that the strong decrease in adsorption under the magnetic field (around 42 % for x = 0.5) masks the increase in the kinetic constant (close to 58 % for x = 0.5) related mainly to the effect of Lorentz forces on the reduction of the electron-hole recombination.
  • PublicationOpen Access
    Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration
    (Elsevier, 2024-10-01) Gandía Aguado, David; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Royo Silvestre, Isaac; Cruz Blas, Carlos Aristóteles de la; Tainta Ausejo, Santiago; Gómez Polo, Cristina; Ciencias; Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    Electromagnetic vibrational harvesters are low-cost devices featuring high-power densities and robust structures, often used for capturing the energy of environmental vibrations (civil infrastructures, transportation, human motion, etc.,). Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. However, the practical implementation of this type of vibrational harvester is currently limited due to the reduced generated power under low-frequency vibrations. In this work, an electromagnetic vibrational harvester is experimentally characterized and analyzed employing magnetic circuit analysis. The harvester consists of a ferromagnetic U-shaped cantilever, a NdFeB magnet and a ferrite magnet used as “magnetic tip mass” to enhance the magnetic flux changes under vibrations of frequency < 100 Hz. For this configuration, an experimental voltage of ∼ 1.2 V peak-to-peak (open circuit) was obtained at a resonant frequency of 77 Hz, enabling the subsequent electronic rectification stage. Additionally, Finite Element Method (FEM) is used to explore different design possibilities including the modeling of complex geometries, mechanical properties and non-linear magnetic materials, enabling the tuning of the resonance frequency from 51 to 77 Hz, keeping constant the induced voltage.