Person:
Garayo Urabayen, Eneko

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Garayo Urabayen

First Name

Eneko

person.page.departamento

Física

ORCID

0000-0002-3144-7898

person.page.upna

811381

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Magnetic binary encoding system based on 3D printing and GMI detection prototype
    (Elsevier, 2022) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Aresti Bartolomé, Maite; Soria Picón, Eneko; Pérez de Landazábal Berganzo, José Ignacio; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Zientziak; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, the feasibility of a magnetic binary encoding system using 3D printing technology is analyzed. The study has a double interest, that is, the possibility of printing a 3D piece that contains the codified information and the development of a system for its decoding. For this purpose, magnetic nanoparticles (magnetite Fe3O4) were embedded in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL). Similar to a conventional barcode, a rectangular piece with an alternating pattern of strips with absence (only polymer) and a 5 wt% of embedded magnetic nanoparticles was 3D printed employing the Fused Deposition Modelling tech- nique (FDM). The information was decoded by means of a Giant Magnetoimpedance (GMI) sensor-based pro- totype, by scanning the surface of the piece and measuring the changes in the magnetic field. As sensor nucleus, an amorphous soft magnetic wire of nominal composition (Co0.94 Fe0.06)72.5 Si12.5 B15 was employed. The decoding prototype incorporates a homemade electronic sensor interface that permits, at the time, the GMI sensor excitation and the subsequent signal conditioning to optimize its response. The output signal enables the detection of the magnetite nanoparticles and the magnetic decoding of the encoded information (“1” and “0”, presence or absence of the magnetic nanoparticles, respectively).
  • PublicationOpen Access
    Non-linear GMI decoding in 3D printed magnetic encoded systems
    (Elsevier, 2023) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; Garayo Urabayen, Eneko; López Ortega, Alberto; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The nonlinear giant magnetoimpedance (GMI) effect was explored as a highly sensitive sensing technology in 3D-printed magnetic encoded systems. Magnetic nanoparticles with low (magnetite, Fe3O4) and high (Co ferrite, Co0.7Fe2.3O4) magnetic remanence were embedded (10 wt%) in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL) and extruded in magnetic filaments to be 3D printed by the Fused Deposition Modelling technique (FDM). Two different geometries were constructed namely, individual magnetic strips and fixed barcoded pieces. The stray magnetic fields generated by the magnetic nanoparticles were detected through the non-linear (second harmonic) GMI voltage using a soft magnetic CoFeSiB wire as the nucleus sensor. The decoding response was analyzed as a function of the magnetization remanence of the nanoparticles, the distance between the individual magnetic strips, and the position (height) of the GMI decoding sensor. It has been shown that modification of the net magnetization direction of each individual fixed strip within the barcode geometry is possible through the application of local external magnetic fields. This possibility improves the versatility of the 3D binary encoding system by adding an additional state (0 without nanoparticles, 1 or −1 depending on the relative orientation of the net magnetization along the strips) during the codifying procedure.