Álvarez-Mozos, Jesús

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Álvarez-Mozos

First Name

Jesús

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 34
  • PublicationOpen Access
    Identifying forest harvesting practices: clear-cutting and thinning in diverse tree species using dense Landsat time series
    (Elsevier, 2024-12-07) Giambelluca, Ana Laura; Hermosilla, Txomin; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako Gobernua
    Forest monitoring plays a critical role in achieving sustainable forest management practices. The ability to identify ongoing harvesting activities is crucial for developing targeted strategies to maintain forest health. Traditional monitoring methods, which rely on field inventories, are often expensive and time-consuming. Remote sensing offers an interesting alternative, leveraging dense time series of satellite imagery and various algorithms for disturbance detection. This study presents and assesses a novel methodology for identifying forest harvesting practices (clear-cutting and thinning) using Continuous Change Detection and Classification (CCDC) algorithm, available in Google Earth Engine. The methodology comprises two steps. In the first step, performed at the pixel level, the CCDC algorithm was used to detect changes in the vegetation cover by considering Landsat 8 spectral bands, vegetation indices, and different combinations thereof. In the second step, two optimal thresholds were determined to identify forest harvesting practices based on the proportion of pixels flagged as change. This study was conducted in forest stands consisting of different conifer and broadleaf species. Accuracy was assessed using an independent set of photo-interpreted samples. The results indicated that the short-wave infrared 2 was the best individual band for forest harvesting practices identification, with an average F-score of 0.77 ± 0.06, overperforming vegetation indices. The combination of all spectral bands was the most effective to identify both clear-cuts and thinning (F-score = 0.85 ± 0.05). This combination was used to evaluate the accuracy of this approach for identifying harvesting practices over different tree species. Poplar (Populus sp.) had the highest identification rate (F-score = 0.99 ± 0.02), while black pine (Pinus nigra J.F. Arnold) stands had the lowest F-score (0.74 ± 0.05). These results highlight the ability to accurately identify forest harvesting practices even in heterogeneous forests with a high diversity of tree species using dense time series of Landsat imagery.
  • PublicationOpen Access
    Crop classification based on temporal signatures of Sentinel-1 observations over Navarre province, Spain
    (MDPI, 2020) Arias Cuenca, María; Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; Ingeniería; Ingeniaritza
    Crop classification provides relevant information for crop management, food security assurance and agricultural policy design. The availability of Sentinel-1 image time series, with a very short revisit time and high spatial resolution, has great potential for crop classification in regions with pervasive cloud cover. Dense image time series enable the implementation of supervised crop classification schemes based on the comparison of the time series of the element to classify with the temporal signatures of the considered crops. The main objective of this study is to investigate the performance of a supervised crop classification approach based on crop temporal signatures obtained from Sentinel-1 time series in a challenging case study with a large number of crops and a high heterogeneity in terms of agro-climatic conditions and field sizes. The case study considered a large dataset on the Spanish province of Navarre in the framework of the verification of Common Agricultural Policy (CAP) subsidies. Navarre presents a large agro-climatic diversity with persistent cloud cover areas, and therefore, the technique was implemented both at the provincial and regional scale. In total, 14 crop classes were considered, including different winter crops, summer crops, permanent crops and fallow. Classification results varied depending on the set of input features considered, obtaining Overall Accuracies higher than 70% when the three (VH, VV and VH/VV) channels were used as the input. Crops exhibiting singularities in their temporal signatures were more easily identified, with barley, rice, corn and wheat achieving F1-scores above 75%. The size of fields severely affected classification performance, with ~14% better classification performance for larger fields (>1 ha) in comparison to smaller fields (<0.5 ha). Results improved when agro-climatic diversity was taken into account through regional stratification. It was observed that regions with a higher diversity of crop types, management techniques and a larger proportion of fallow fields obtained lower accuracies. The approach is simple and can be easily implemented operationally to aid CAP inspection procedures or for other purposes. © 2020 by the authors.
  • PublicationOpen Access
    Evaluation of 2D models for the prediction of surface depression storage using realistic reference values
    (Wiley, 2016) Giménez Díaz, Rafael; Mezkiritz Barberena, Irantzu; Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Martínez de Aguirre Escobar, Alejandro; Casalí Sarasíbar, Javier; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Depression storage (DS) is the maximum storage of precipitation and runoff in the soil surface at a given slope. The DS is determined by soil roughness that in agricultural soils is largely affected by tillage. The direct measurement of DS is not straightforward because of the natural permeability of the soil. Therefore, DS has generally been estimated from 2D/3D empirical relationships and numerical algorithms based on roughness indexes and height measurements of the soil surface, respectively. The objective of this work was to evaluate the performance of some 2D models for DS, using direct and reliable measurements of DS in an agricultural soil as reference values. The study was carried out in experimental microplots where DS was measured in six situations resulting from the combination of three types of tillage carried out parallel and perpendicular to the main slope. Those data were used as reference to evaluate four empirical models and a numerical method. Longitudinal altitudinal profiles of the relief were obtained by a laser profilometer. Infiltration measurements were carried out before and after tillage. The DS was largely affected by tillage and its direction. Highest values of DS are found on rougher surfaces mainly when macroforms cut off the dominant slope. The empirical models had a limited performance while the numerical method was the most effective, even so, with an important variability. In addition, a correct hydrological management should take into account that each type of soil tillage affects infiltration rate differently.
  • PublicationOpen Access
    On the influence of spatial resolution in soil surface roughness characterization using Tls and Sfm techniques
    (IEEE, 2018) Martínez de Aguirre Escobar, Alejandro; Álvarez-Mozos, Jesús; Giménez Díaz, Rafael; Milenković, Milutin; Pfeifer, Norbert; Ingeniería; Ingeniaritza
    Soil surface roughness strongly affects the scattering of microwaves and determines the backscattering coefficient observed by SAR (Synthetic Aperture Radar) sensors. The aim of this study is to analyze the influence of the spatial resolution of Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) techniques to parameterize surface roughness over agricultural soils. Three experimental plots (5 x 5 meters) representing different roughness conditions were measured by TLS and SfM techniques. Roughness parameters (s and l) were calculated from profiles obtained at different spatial resolutions in parallel and in perpendicular to the tillage direction on each plot. The results showed minor differences in the parameters values between both techniques and, in general, a decreasing trend and an increasing trend for lower spatial resolutions for parameter s and l, respectively.
  • PublicationOpen Access
    On the assimilation set-up of ASCAT soil moisture data for improving streamflow catchment simulation
    (Elsevier, 2018) Loizu Maeztu, Javier; Massari, Christian; Álvarez-Mozos, Jesús; Tarpanelli, Angelica; Brocca, Luca; Casalí Sarasíbar, Javier; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Assimilation of remotely sensed surface soil moisture (SSM) data into hydrological catchment models has been identified as a means to improve stream flow simulations, but reported results vary markedly depending on the particular model, catchment and assimilation procedure used. In this study, the in fluence of key aspects, such as the type of model, re-scaling technique and SSM observation error considered, were evaluated. For this aim, Advanced SCATterometer ASCAT-SSM observations were assimilated through the ensemble Kalman filter into two hydrological models of different complexity namely MISDc and TOPLATS) run on two Mediterranean catchments of similar size (750 km2). Three different re-scaling techniques were evaluated (linear re-scaling, variance matching and cumulative distribution function matching), and SSM observation error values ranging from 0.01% to 20% were considered. Four different efficiency measures were used for evaluating the results. Increases in Nash-Sutcliffe efficiency (0.03–0.15) and efficiency indices (10–45%) were obtained, especially when linear re-scaling and observation errors within 4-6% were considered. This study found out that there is a potential to improve stream flow prediction through data assimilation of remotely sensed SSM in catchments of different characteristics and with hydrological models of different conceptualizations schemes, but for that, a careful evaluation of the observation error and re-scaling technique set-up utilized is required.
  • PublicationOpen Access
    Comparison of digital terrain models obtained with LiDAR and photogrammetry
    (Springer, 2020) Martínez de Aguirre Escobar, Alejandro; García Morales, Víctor; Álvarez-Mozos, Jesús; Ingeniería; Ingeniaritza
    Airborne LiDAR sensors capture three-dimensional information of the Earth, useful for obtaining high accuracy Digital Terrain Models (DTM). The Spanish National Plan for Aerial Orthophotography (PNOA) is an initiative of the Spanish Geographical Institute whereby nationwide LiDAR datasets are periodically acquired and made available to the public as.las files and value added products (e.g., DTM). The objective of this study is to assess the added value of PNOA LiDAR DTMs by comparing them to DTMs obtained through classical photogrammetric techniques. With this aim, four areas of interest were selected in Navarre (north of Spain), in areas with challenging characteristics such as forests, karst landforms, agricultural terraces and ravines. A 5 × 5 m DTM obtained with classical photogrammetry in 2008 was compared with a LiDAR DTM of the same pixel size obtained in 2011, assuming no significant changes occurred in this time. Height differences were evaluated, as well as slope, aspect and curvature differences. Besides, a multiresolution analysis was carried out to quantify how DTM smoothing affected height variations between neighbor pixels, measured with the standard deviation on a 5 × 5 window. The results obtained showed that the LiDAR DTMs provided an enhanced description of topography, particularly under forests and in areas with complex topography.
  • PublicationOpen Access
    The added value of stratified topographic correction of multispectral images
    (MDPI, 2016) Sola Torralba, Ion; González de Audícana Amenábar, María; Álvarez-Mozos, Jesús; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Satellite images in mountainous areas are strongly affected by topography. Different studies demonstrated that the results of semi-empirical topographic correction algorithms improved when a stratification of land covers was carried out first. However, differences in the stratification strategies proposed and also in the evaluation of the results obtained make it unclear how to implement them. The objective of this study was to compare different stratification strategies with a non-stratified approach using several evaluation criteria. For that purpose, Statistic-Empirical and Sun-Canopy-Sensor + C algorithms were applied and six different stratification approaches, based on vegetation indices and land cover maps, were implemented and compared with the non-stratified traditional option. Overall, this study demonstrates that for this particular case study the six stratification approaches can give results similar to applying a traditional topographic correction with no previous stratification. Therefore, the non-stratified correction approach could potentially aid in removing the topographic effect, because it does not require any ancillary information and it is easier to implement in automatic image processing chains. The findings also suggest that the Statistic-Empirical method performs slightly better than the Sun-Canopy-Sensor + C correction, regardless of the stratification approach. In any case, further research is necessary to evaluate other stratification strategies and confirm these results.
  • PublicationOpen Access
    Evaluación multitemporal de métodos de corrección topográfica mediante el uso de imágenes sintéticas multiespectrales
    (Asociación Española de Teledetección, 2014) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Torres Escribano, José Luis; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    En este trabajo se presentan los resultados de la evaluación multitemporal de varios métodos de corrección topográfica (TOC), cuya bondad se determina de forma cuantitativa mediante el uso de imágenes sintéticas multiespectrales simuladas para diferentes fechas de adquisición a lo largo del año. Para cada fecha se generan dos imágenes sintéticas, una considerando el relieve real (imagen SR), y otra el relieve horizontal (imagen SH). Las imágenes SR se corrigen utilizando distintos TOC y estas imágenes corregidas se comparan con la corrección ideal (imagen SH) mediante el índice de similitud estructural (SSIM). Los valores de SSIM nos permiten evaluar la eficacia de cada corrección para distintas fechas, es decir, para distintos ángulos de elevación solar.
  • PublicationOpen Access
    On the influence of acquisition geometry in backscatter time series over wheat
    (Elsevier, 2022) Arias Cuenca, María; Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua
    Dense time series of Sentinel-1 imagery are an invaluable information source for agricultural applications. Multiple orbits can observe a specific area and their combination could improve the temporal resolution of the time series. However, the orbits have different acquisition geometries regarding incidence and azimuth angles that need to be considered. Furthermore, crops are dynamic canopies and the influence of incidence and azimuth angles might change during the agricultural season due to different phenological stages. The main objective of this letter is to evaluate the influence of different acquisition geometries in Sentinel-1 backscatter time series over wheat canopies, and to propose a strategy for their correction. A large dataset of wheat parcels (∼40,000) was used and 344 Sentinel-1 images from three relative orbits were processed during two agricultural seasons. The first analysis was a monthly evaluation of the influence of incidence angle on backscatter (σ0) and terrain flattened backscatter (γ0). It showed that terrain flattening significantly reduced the backscatter dependence on incidence angle, being negligible in VH polarization but not completely in VV polarization. Incidence angle influence in VV backscatter changed in time due to wheat growth dynamics. To further reduce it, an incidence angle normalization technique followed by an azimuthal anisotropy correction were applied. In conclusion, γ0 enabled a reasonable combination of different relative orbits, that may be sufficient for many applications. However, for detailed analyses, the correction techniques might be implemented to further reduce orbit differences, especially in bare soil periods or winter months.
  • PublicationOpen Access
    On the added value of quad-pol data in a multi-temporal crop classification framework based on RADARSAT-2 imagery
    (MDPI, 2016) Larrañaga Urien, Arantzazu; Álvarez-Mozos, Jesús; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Polarimetric SAR images are a rich data source for crop mapping. However, quad-pol sensors have some limitations due to their complexity, increased data rate, and reduced coverage and revisit time. The main objective of this study was to evaluate the added value of quad-pol data in a multi-temporal crop classification framework based on SAR imagery. With this aim, three RADARSAT-2 scenes were acquired between May and June 2010. Once we analyzed the separability and the descriptive analysis of the features, an object-based supervised classification was performed using the Random Forests classification algorithm. Classification results obtained with dual-pol (VV-VH) data as input were compared to those using quad-pol data in different polarization bases (linear H-V, circular, and linear 45º), and also to configurations where several polarimetric features (Pauli and Cloude–Pottier decomposition features and co-pol coherence and phase difference) were added. Dual-pol data obtained satisfactory results, equal to those obtained with quad-pol data (in H-V basis) in terms of overall accuracy (0.79) and Kappa values (0.69). Quad-pol data in circular and linear 45º bases resulted in lower accuracies. The inclusion of polarimetric features, particularly co-pol coherence and phase difference, resulted in enhanced classification accuracies with an overall accuracy of 0.86 and Kappa of 0.79 in the best case, when all the polarimetric features were added. Improvements were also observed in the identification of some particular crops, but major crops like cereals, rapeseed, and sunflower already achieved a satisfactory accuracy with the VV-VH dual-pol configuration and obtained only minor improvements. Therefore, it can be concluded that C-band VV-VH dual-pol data is almost ready to be used operationally for crop mapping as long as at least three acquisitions in dates reflecting key growth stages representing typical phenology differences of the present crops are available. In the near future, issues regarding the classification of crops with small field sizes and heterogeneous cover (i.e., fallow and grasslands) need to be tackled to make this application fully operational.