Álvarez-Mozos, Jesús
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Álvarez-Mozos
First Name
Jesús
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
41 results
Search Results
Now showing 1 - 10 of 41
Publication Open Access A diachronic analysis of a changing landscape on the Duero river borderlands of Spain and Portugal combining remote sensing and ethnographic approaches(MDPI, 2021) Hearn, Kyle Patrick; Álvarez-Mozos, Jesús; Giza eta Hezkuntza Zientziak; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ciencias Humanas y de la Educación; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Arribes del Duero region spans the border of both Spain and Portugal along the Duero River. On both sides of the border, the region boasts unique human‐influenced ecosystems. The borderland landscape is dotted with numerous villages that have a history of maintaining and managing an agrosilvopastoral use of the land. Unfortunately, the region in recent decades has suffered from massive outmigration, resulting in significant rural abandonment. Consequently, the oncemaintained landscape is evolving into a more homogenous vegetative one, resulting in a greater propensity for wildfires. This study utilizes an interdisciplinary, integrated approach of “bottom up” ethnography and “top down” remote sensing data from Landsat imagery, to characterize and document the diachronic vegetative changes on the landscape, as they are perceived by stakeholders and satellite spectral analysis. In both countries, stakeholders perceived the current changes and threats facing the landscape. Remote sensing analysis revealed an increase in forest cover throughout the region, and more advanced, drastic change on the Spanish side of the study area marked by wildfire and a rapidly declining population. Understanding the evolution and history of this rural landscape can provide more effective management and its sustainability.Publication Open Access Factors controlling sediment export in a small agricultural watershed in Navarre (Spain)(Elsevier, 2012) Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Grande Esteban, Ildefonso; Díez Beregaña, Javier; Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; Goñi Garatea, Mikel; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gestión de Empresas; Enpresen Kudeaketa; Gobierno de Navarra / Nafarroako GobernuaIt is recognised that the hydrological and erosion processes in watersheds are very much conditioned by the (inter)action of a number of variables. This paper covers a 15-year period of studying those factors that have a major influence on the sediment yield and transport during individual hydrological events in a small Mediterranean agricultural watershed. Multivariate statistical techniques such as cluster analysis and principal component analysis were applied for the interpretation of datasets. In addition, the relationships between suspended sediment concentration and discharge (hysteretic loops) were also analysed. The hydrological response of the studied watershed is mainly controlled by the antecedent condition of the flow. Most of the runoff and sediment are generated during the wet season when vegetation cover is scant and saturation overland flow occurs promptly as a response to almost any rainfall events. In contrast, during the dry seasons even if high-intensity rainfalls normally occur, very scant runoffs are, however recorded, at the exit of the watershed. Most of the eroded sediment seems to come from riparian areas. The discharge registered at the watershed outlet up to 1 h prior to the flood is a very good surrogate for antecedent soil moisture.Publication Open Access Evaluation of surface roughness parameters in agricultural soils with different tillage conditions using a laser profile meter(Elsevier, 2016) Martínez de Aguirre Escobar, Alejandro; Álvarez-Mozos, Jesús; Giménez Díaz, Rafael; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakSurface roughness crucially affects the hydrological and erosive behaviours of soils. In agricultural areas surface roughness is directly related to tillage, whose action strongly affects the key physical properties of soils and determines the occurrence and fate of several processes (e.g., surface storage, infiltration, etc.). The characterisation of surface roughness as a result of tillage operations is not straightforward, and numerous parameters and indices have been proposed for quantifying it. In this article, a database of 164 profiles (each 5 m long), measured in 5 different roughness classes, was analysed. Four roughness classes corresponded to typical tillage operations (i.e., mouldboard, harrow, seedbed, etc.), and the fifth represented a seedbed soil that was subject to rainfall. The aim of the research was to evaluate and select the surface roughness parameters that best characterised and quantified the surface roughness caused by typical tillage operations. In total, 21 roughness parameters (divided into 4 categories) were assessed. The parameters that best separated and characterised the different roughness classes were the limiting elevation difference (LD) and the Mean Upslope Depression index (MUD); however, the parameters most sensitive to rainfall action on seedbed soils were limiting slope (LS) and the crossover lengths measured with the semivariogram method (lSMV) and the root mean square method (lRMS). Many parameters had high degrees of correlation with each other, and therefore gave almost identical information. The results of this study may contribute to the understanding of the surface roughness phenomenon and its parameterisation in agricultural soils.Publication Open Access Inter-comparison of atmospheric correction methods on Sentinel-2 images applied to croplands(IEEE, 2018) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Ingeniería; IngeniaritzaAtmospheric correction of high resolution satellite scenery is a necessary preprocessing step for applications where bottom of atmosphere (BOA) reflectances are needed. The selection of the best atmospheric correction method to use on images acquired from new platforms, such as Sentinel-2, is essential to provide accurate BOA reflectances. In this work the performance of three atmospheric correction methods (6S, MAJA and SEN2COR) applied to Sentinel-2 scenes are compared by evaluating the resultant spectral signatures of six crop types on two specific dates, and their NDVI time series along a complete year. Although SEN2COR introduced greater corrections, especially in the infrared bands, the results suggest a varying performance of the methods depending on the land cover and the atmospheric conditions. Further research, particularly incorporating ground truth data, is recommended to rigorously validate the different atmospheric methods.Publication Open Access Multitemporal evaluation of topographic correction algorithms using synthetic images(SPIE, 2012) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Torres Escribano, José Luis; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakLand cover classification and quantitative analysis of multispectral data in mountainous regions is considerably hampered by the influence of topography on the spectral response pattern. In the last years, different topographic correction (TOC) algorithms have been proposed to correct illumination differences between sunny and shaded areas observed by optical remote sensors. Although the available number of TOC methods is high, the evaluation of their performance usually relies on the existence of precise land cover information, and a standardised and objective evaluation procedure has not been proposed yet. Besides, previous TOC assessment studies only considered a limited set of illumination conditions, normally assuming favourable illumination conditions. This paper presents a multitemporal evaluation of TOC methods based on synthetically generated images in order to evaluate the influence of solar angles on the performance of TOC methods. These synthetic images represent the radiance an optical sensor would receive under specific geometric and temporal acquisition conditions and assuming a certain land-cover type. A method for creating synthetic images using state-of-the-art irradiance models has been tested for different periods of the year, which entails a variety of solar angles. Considering the real topography of a specific area a Synthetic Real image (SR) is obtained, and considering the relief of this area as being completely flat a Synthetic Horizontal image (SH) is obtained. The comparison between corrected image obtained applying a TOC method to SR image and SH image of the same area, i.e. considered the ideal correction, allows assessing the performance of each TOC algorithm.Publication Open Access Influence of surface roughness sample size for C-band SAR backscatter applications on agricultural soils(IEEE, 2017) Martínez de Aguirre Escobar, Alejandro; Álvarez-Mozos, Jesús; Lievens, Hans; Verhoest, Niko E. C.; Giménez Díaz, Rafael; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería RuralSoil surface roughness determines the backscatter coefficient observed by radar sensors. The objective of this letter was to determine the surface roughness sample size required in synthetic aperture radar applications and to provide some guidelines on roughness characterization in agricultural soils for these applications. With this aim, a data set consisting of ten ENVISAT/ASAR observations acquired coinciding with soil moisture and surface roughness surveys has been processed. The analysis consisted of: 1) assessing the accuracies of roughness parameters s and l depending on the number of 1-m-long profiles measured per field; 2) computing the correlation of field average roughness parameters with backscatter observations; and 3) evaluating the goodness of fit of three widely used backscatter models, i.e., integral equation model (IEM), geometrical optics model (GOM), and Oh model. The results obtained illustrate a different behavior of the two roughness parameters. A minimum of 10-15 profiles can be considered sufficient for an accurate determination of s, while 20 profiles might still be not enough for accurately estimating l. The correlation analysis revealed a clear sensitivity of backscatter to surface roughness. For sample sizes >15 profiles, R values were as high as 0.6 for s and ~0.35 for l, while for smaller sample sizes R values dropped significantly. Similar results were obtained when applying the backscatter models, with enhanced model precision for larger sample sizes. However, IEM and GOM results were poorer than those obtained with the Oh model and more affected by lower sample sizes, probably due to larger uncertainly of l.Publication Open Access Clasificación de usos y cubiertas del suelo y análisis de cambios en los alrededores de la Reserva Ecológica Manglares Churute (Ecuador) mediante una serie de imágenes Sentinel-1(Universidad Politécnica de Valencia, 2020) Vélez Alvarado, Diana; Álvarez-Mozos, Jesús; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaLa gestión de las áreas naturales protegidas frecuentemente obvia la importancia que tiene el territorio que rodea el perímetro del espacio protegido (zona de amortiguación). Estas zonas pueden ser el origen de impactos que amenacen el estado de conservación de los ecosistemas protegidos. En este artículo se describe un caso de estudio centrado en la Reserva Ecológica Manglares Churute (REMCh) de Ecuador, en el que se utilizó una serie temporal de imágenes Sentinel-1 para clasificar los usos y cubiertas del suelo y para analizar los cambios ocurridos en el periodo 2015-2018. Tras procesar la serie de imágenes y delinear el conjunto de zonas de entrenamiento sobre los principales usos y cubiertas se implementó un algoritmo de clasificación Random Forests (RF), cuyos parámetros fueron optimizados mediante una validación cruzada con el conjunto de datos de entrenamiento (70% de la verdad campo). El 30% restante se utilizó para validar la clasificación realizada, logrando una fiabilidad global del 84%, un coeficiente Kappa de 0,8 y unas métricas de rendimiento por clase satisfactorias para los principales cultivos y usos del suelo. Los resultados fueron peores para las clases más heterogéneas y minoritarias, no obstante, se considera que la clasificación fue lo suficientemente precisa para realizar el análisis de cambios perseguido. Entre 2015 y 2018 se constató un aumento en la superficie destinada a usos intensivos como el cultivo de camarón blanco y la caña de azúcar, en detrimento de otros cultivos tradicionales como el arroz o el banano. Aunque estos cambios se produjeron en las zonas que rodean al área natural protegida, pueden causar un deterioro de la calidad del agua debido al uso de fertilizantes y pesticidas, por tanto, se recomienda prestar atención a estas zonas de amortiguamiento a la hora de diseñar políticas e instrumentos adecuados de protección medioambiental.Publication Open Access Automatic detection of uprooted orchards based on orthophoto texture analysis(MDPI, 2017) Ciriza Labiano, Raquel; Sola Torralba, Ion; Albizua, Lourdes; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakPermanent crops, such as olive groves, vineyards and fruit trees, are important in European agriculture because of their spatial and economic relevance. Agricultural geographical databases (AGDBs) are commonly used by public bodies to gain knowledge of the extension covered by these crops and to manage related agricultural subsidies and inspections. However, the updating of these databases is mostly based on photointerpretation, and thus keeping this information up-to-date is very costly in terms of time and money. This paper describes a methodology for automatic detection of uprooted orchards (parcels where fruit trees have been eliminated) based on the textural classification of orthophotos with a spatial resolution of 0.25 m. The textural features used for this classification were derived from the grey level co-occurrence matrix (GLCM) and wavelet transform, and were selected through principal components (PCA) and separability analyses. Next, a Discriminant Analysis classification algorithm was used to detect uprooted orchards. Entropy, contrast and correlation were found to be the most informative textural features obtained from the co-occurrence matrix. The minimum and standard deviation in plane 3 were the selected features based on wavelet transform. The classification based on these features achieved a true positive rate (TPR) of over 80% and an accuracy (A) of over 88%. As a result, this methodology enabled reducing the number of fields to photointerpret by 60–85%, depending on the membership threshold value selected. The proposed approach could be easily adopted by different stakeholders and could increase significantly the efficiency of agricultural database updating tasks.Publication Open Access Influence of surface roughness measurement scale on radar backscattering in different agricultural soils(IEEE, 2017) Martínez de Aguirre Escobar, Alejandro; Álvarez-Mozos, Jesús; Lievens, Hans; Verhoest, Niko E. C.; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería RuralSoil surface roughness strongly affects the scattering of microwaves on the soil surface and determines the backscattering coefficient (σ 0 ) observed by radar sensors. Previous studies have shown important scale issues that compromise the measurement and parameterization of roughness especially in agricultural soils. The objective of this paper was to determine the roughness scales involved in the backscattering process over agricultural soils. With this aim, a database of 132 5-m profiles taken on agricultural soils with different tillage conditions was used. These measurements were acquired coinciding with a series of ENVISAT/ASAR observations. Roughness profiles were processed considering three different scaling issues: 1) influence of measurement range; 2) influence of low-frequency roughness components; and 3) influence of high-frequency roughness components. For each of these issues, eight different roughness parameters were computed and the following aspects were evaluated: 1) roughness parameters values; 2) correlation with σ 0 ; and 3) goodness-of-fit of the Oh model. Most parameters had a significant correlation with σ 0 especially the fractal dimension, the peak frequency, and the initial slope of the autocorrelation function. These parameters had higher correlations than classical parameters such as the standard deviation of surface heights or the correlation length. Very small differences were observed when longer than 1-m profiles were used as well as when small-scale roughness components (<;5 cm) or large-scale roughness components (>100 cm) were disregarded. In conclusion, the medium-frequency roughness components (scale of 5-100 cm) seem to be the most influential scales in the radar backscattering process on agricultural soils.Publication Open Access Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes(Elsevier, 2018) Sola Torralba, Ion; García-Martín, Alberto; Sandonís Pozo, Leire; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Ingeniería; IngeniaritzaAtmospheric correction of optical satellite imagery is an essential pre-processing for modelling biophysical variables, multi-temporal analysis, and digital classification processes. Sentinel-2 products available for users are distributed by the European Space Agency (ESA) as Top Of Atmosphere reflectance values in cartographic geometry (Level-1C product). In order to obtain Bottom Of Atmosphere reflectance images (Level-2A product) derived from this Level-1C products, ESA provides the SEN2COR module, which is implemented in the Sentinel Application Platform. Alternatively, ESA recently distributes Level-2A products processed by SEN2COR with a default configuration. On the other hand, the conversion from Level-1C to Level-2A product can be generated using alternative atmospheric correction methods, such as MAJA, 6S, or iCOR. In this context, this paper aims to evaluate the quality of Level-2A products obtained through different methods in Mediterranean shrub and grasslands by comparing data obtained from Sentinel-2 imagery with field spectrometry data. For that purpose, six plots with different land covers (asphalt, grass, shrub, pasture, and bare soil) were analyzed, by using synchronous imagery to fieldwork (from July to September 2016). The results suggest the suitability of the applied atmospheric corrections, with coefficients of determination higher than 0.90 and root mean square error lower than 0.04 achieving a relative error in bottom of atmosphere reflectance of only 2–3%. Nevertheless, minor differences were observed between the four tested methods, with slightly varying results depending on the spectral band and land cover.