Álvarez-Mozos, Jesús
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Álvarez-Mozos
First Name
Jesús
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access New methodology for wheat attenuation correction at C-Band VV-polarized backscatter time series(IEEE, 2022) Arias Cuenca, María; Campo-Bescós, Miguel; Arregui Odériz, Luis Miguel; González de Audícana Amenábar, María; Álvarez-Mozos, Jesús; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; IngenieríaWheat is one of the most important crops worldwide, and thus the use of remote sensing data for wheat monitoring has attracted much interest. Synthetic Aperture Radar (SAR) observations show that, at C-band and VV polarization, wheat canopy attenuates the surface scattering component from the underlying soil during a significant part of its growth cycle. This behavior needs to be accounted for or corrected before soil moisture retrieval is attempted. The objective of this paper is to develop a new method for wheat attenuation correction (WATCOR) applicable to Sentinel-1 VV time series and based solely on the information contained in the time series itself. The hypothesis of WATCOR is that without attenuation, VV backscatter would follow a stable long-term trend during the agricultural season, with short-term variations caused by soil moisture dynamics. The method relies on time series smoothing and changing point detection, and its implementation follows a series of simple steps. The performance of the method was compared by evaluating the correlation between backscatter and soil moisture content in six wheat fields with available soil moisture data. The Water Cloud Model (WCM) was also applied as a benchmark. The results showed that WATCOR successfully removed the attenuation in the time series, and achieved the highest correlation with soil moisture, improving markedly the correlation of the original backscatter. WATCOR can be easily implemented, as it does not require parameterization or any external data, only an approximate indication of the period where attenuation is likely to occur.Publication Open Access Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields(Elsevier, 2023) Arias Cuenca, María; Notarnicola, Claudia; Campo-Bescós, Miguel; Arregui Odériz, Luis Miguel; Álvarez-Mozos, Jesús; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSoil moisture (SM) is a key variable in agriculture and its monitoring is essential. SM determines the amount of water available to plants, having a direct impact on the development of crops, on the forecasting of crop yields and on the surveillance of food security. Microwave remote sensing offers a great potential for estimating SM because it is sensitive to the dielectric characteristics of observed surface that depend on surface soil moisture. The objective of this study is the evaluation of three change detection methodologies for SM estimation over wheat at the agricultural field scale based on Sentinel-1 time series: Short Term Change Detection (STCD), TU Wien Change Detection (TUWCD) and Multitemporal Bayesian Change Detection (MTBCD). Different methodological alternatives were proposed for the implementation of these techniques at the agricultural field scale. Soil moisture measurements from eight experimental wheat fields were used for validating the methodologies. All available Sentinel-1 acquisitions were processed and the eventual benefit of correcting for vegetation effects in backscatter time series was evaluated. The results were rather variable, with some experimental fields achieving successful performance metrics (ubRMSE ~ 0.05 m3 /m3 ) and some others rather poor ones (ubRMSE > 0.12 m3 / m3 ). Evaluating median performance metrics, it was observed that both TUWCD and MTBCD methods obtained better results when run with vegetation corrected backscatter time series (ubRMSE ~0.07 m3 /m3 ) whereas STCD produced similar results with and without vegetation correction (ubRMSE ~0.08 m3 /m3 ). The soil moisture content had an influence on the accuracy of the different methodologies, with higher errors observed for drier conditions and rain-fed fields, in comparison to wetter conditions and irrigated fields. Taking into account the spatial scale of this case study, results were considered promising for the future application of these techniques in irrigation management.