Álvarez-Mozos, Jesús

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Álvarez-Mozos

First Name

Jesús

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Identifying forest harvesting practices: clear-cutting and thinning in diverse tree species using dense Landsat time series
    (Elsevier, 2024-12-07) Giambelluca, Ana Laura; Hermosilla, Txomin; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako Gobernua
    Forest monitoring plays a critical role in achieving sustainable forest management practices. The ability to identify ongoing harvesting activities is crucial for developing targeted strategies to maintain forest health. Traditional monitoring methods, which rely on field inventories, are often expensive and time-consuming. Remote sensing offers an interesting alternative, leveraging dense time series of satellite imagery and various algorithms for disturbance detection. This study presents and assesses a novel methodology for identifying forest harvesting practices (clear-cutting and thinning) using Continuous Change Detection and Classification (CCDC) algorithm, available in Google Earth Engine. The methodology comprises two steps. In the first step, performed at the pixel level, the CCDC algorithm was used to detect changes in the vegetation cover by considering Landsat 8 spectral bands, vegetation indices, and different combinations thereof. In the second step, two optimal thresholds were determined to identify forest harvesting practices based on the proportion of pixels flagged as change. This study was conducted in forest stands consisting of different conifer and broadleaf species. Accuracy was assessed using an independent set of photo-interpreted samples. The results indicated that the short-wave infrared 2 was the best individual band for forest harvesting practices identification, with an average F-score of 0.77 ± 0.06, overperforming vegetation indices. The combination of all spectral bands was the most effective to identify both clear-cuts and thinning (F-score = 0.85 ± 0.05). This combination was used to evaluate the accuracy of this approach for identifying harvesting practices over different tree species. Poplar (Populus sp.) had the highest identification rate (F-score = 0.99 ± 0.02), while black pine (Pinus nigra J.F. Arnold) stands had the lowest F-score (0.74 ± 0.05). These results highlight the ability to accurately identify forest harvesting practices even in heterogeneous forests with a high diversity of tree species using dense time series of Landsat imagery.
  • PublicationOpen Access
    Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields
    (Elsevier, 2023) Arias Cuenca, María; Notarnicola, Claudia; Campo-Bescós, Miguel; Arregui Odériz, Luis Miguel; Álvarez-Mozos, Jesús; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Soil moisture (SM) is a key variable in agriculture and its monitoring is essential. SM determines the amount of water available to plants, having a direct impact on the development of crops, on the forecasting of crop yields and on the surveillance of food security. Microwave remote sensing offers a great potential for estimating SM because it is sensitive to the dielectric characteristics of observed surface that depend on surface soil moisture. The objective of this study is the evaluation of three change detection methodologies for SM estimation over wheat at the agricultural field scale based on Sentinel-1 time series: Short Term Change Detection (STCD), TU Wien Change Detection (TUWCD) and Multitemporal Bayesian Change Detection (MTBCD). Different methodological alternatives were proposed for the implementation of these techniques at the agricultural field scale. Soil moisture measurements from eight experimental wheat fields were used for validating the methodologies. All available Sentinel-1 acquisitions were processed and the eventual benefit of correcting for vegetation effects in backscatter time series was evaluated. The results were rather variable, with some experimental fields achieving successful performance metrics (ubRMSE ~ 0.05 m3 /m3 ) and some others rather poor ones (ubRMSE > 0.12 m3 / m3 ). Evaluating median performance metrics, it was observed that both TUWCD and MTBCD methods obtained better results when run with vegetation corrected backscatter time series (ubRMSE ~0.07 m3 /m3 ) whereas STCD produced similar results with and without vegetation correction (ubRMSE ~0.08 m3 /m3 ). The soil moisture content had an influence on the accuracy of the different methodologies, with higher errors observed for drier conditions and rain-fed fields, in comparison to wetter conditions and irrigated fields. Taking into account the spatial scale of this case study, results were considered promising for the future application of these techniques in irrigation management.