Cia Alonso, Izaskun

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Cia Alonso

First Name

Izaskun

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Evaluating subject behavior during ingestion: a portable eye-tracking approach
    (Association for Computing Machinery, 2024-06-04) Cia Alonso, Izaskun; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    Eye tracking is a promising technique to measure gaze direction on food while eating that can be used as a tool to asses eating habits and disorders. However, the studies done as yet use high-quality (infrared) eye trackers under controlled lab environments that heavily constrain user movements and behaviour during food intake. This thesis aims to obtain a robust low-cost eye tracking system that can be used out of the lab, getting rid of a computer and furthermore, to delve in techniques for adapting an eye tracking model to a different application with less effort and minimal calibration.
  • PublicationOpen Access
    A deep learning image analysis method for renal perfusion estimation in pseudo-continuous arterial spin labelling MRI
    (Elsevier, 2023) Oyarzun Domeño, Anne; Cia Alonso, Izaskun; Echeverría Chasco, Rebeca; Fernández Seara, María A.; Martín Moreno, Paloma L.; Bastarrika, Gorka; Navallas Irujo, Javier; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Accurate segmentation of renal tissues is an essential step for renal perfusion estimation and postoperative assessment of the allograft. Images are usually manually labeled, which is tedious and prone to human error. We present an image analysis method for the automatic estimation of renal perfusion based on perfusion magnetic resonance imaging. Specifically, non-contrasted pseudo-continuous arterial spin labeling (PCASL) images are used for kidney transplant evaluation and perfusion estimation, as a biomarker of the status of the allograft. The proposed method uses machine/deep learning tools for the segmentation and classification of renal cortical and medullary tissues and automates the estimation of perfusion values. Data from 16 transplant patients has been used for the experiments. The automatic analysis of differentiated tissues within the kidney, such as cortex and medulla, is performed by employing the time-intensity-curves of non-contrasted T1-weighted MRI series. Specifically, using the Dice similarity coefficient as a figure of merit, results above 93%, 92% and 82% are obtained for whole kidney, cortex, and medulla, respectively. Besides, estimated cortical and medullary perfusion values are considered to be within the acceptable ranges within clinical practice.
  • PublicationOpen Access
    Advancing ASL kidney image registration: a tailored pipeline with VoxelMorph
    (Springer, 2025-01-31) Oyarzun Domeño, Anne; Cia Alonso, Izaskun; Echeverría Chasco, Rebeca; Fernández Seara, María A.; Martín Moreno, Paloma L.; García Fernández, Nuria; Bastarrika, Gorka; Navallas Irujo, Javier; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    In clinical renal assessment, image registration plays a pivotal role, as patient movement during data acquisition can significantly impede image post-processing and the accurate estimation of hemodynamic parameters. This study introduces a deep learning-based image registration framework specifically for arterial spin labeling (ASL) imaging. ASL is a magnetic resonance imaging technique that modifies the longitudinal magnetization of blood perfusing the kidney using a series of radiofrequency pulses combined with slice-selective gradients. After tagging the arterial blood, label images are captured following a delay, allowing the tagged blood bolus to enter the renal tissue, while control images are acquired without tagging the arterial spins. Given that perfusion maps are generated at the pixel level by subtracting control images from label images and considering the relatively small signal intensity difference, precise alignment of these images is crucial to minimize motion artefacts and prevent significant errors in perfusion calculations. Moreover, due to the extended ASL acquisition times and the anatomical location of the kidneys, renal images are often susceptible to pulsation, peristalsis, and breathing motion. These motion-induced noises and other instabilities can adversely affect ASL imaging outcomes, making image registration essential. However, research on renal MRI registration, particularly with respect to learning-based techniques, remains limited, with even less focus on renal ASL. Our study proposes a learning-based image registration approach that builds upon VoxelMorph and introduces groupwise inference as a key enhancement. The dataset includes 2448 images of transplanted kidneys (TK) and 2456 images of healthy kidneys (HK). We compared the automatic image registration results with the widely recognized optimization method Elastix. The model’s performance was evaluated using the mean structural similarity index (MSSIM), normalized correlation coefficient (NCC), temporal signal-tonoise ratio (TSNR) of the samples, and the mean cortical signal (CSIM) in perfusion-weighted images, thereby extending the evaluation beyond traditional similarity-based metrics. Our method achieved superior image registration performance, with peak NCC (0.987 ± 0.006) and MSSIM (0.869 ± 0.048) values in the kidney region, significantly surpassing Elastix and the unregistered series (p\ 0.05) on TK and HK datasets. Regularization analysis showed that higher k values (1, 2) produced smoother deformation fields, while moderate k values (0.5, 0.9) balanced smoothness and detail, maintaining low non-positive Jacobian percentages (\1%) comparable to Elastix. Additionally, our method improved CSIM by 14.3% (2.304 ± 1.167) and TSNR by 13.1% (3.888 ± 2.170) in TK, and achieved up to 13.2% (CSIM) and 29.8% (TSNR) enhancements in HK, demonstrating robustness and improved signal quality across datasets and acquisition techniques.