Ruiz ZamarreƱo, Carlos
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ruiz ZamarreƱo
First Name
Carlos
person.page.departamento
IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
40 results
Search Results
Now showing 1 - 10 of 40
Publication Open Access SnO2 based optical fiber refractometers(SPIE, 2012) SĆ”nchez ZĆ”bal, Pedro; Ruiz ZamarreƱo, Carlos; HernĆ”ez SĆ”enz de Zaitigui, Miguel; Del Villar, Ignacio; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; IngenierĆa ElĆ©ctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaIn this work, the fabrication and characterization of refractometers based on lossy mode resonances (LMR) is presented. Tin dioxide (SnO2) films deposited on optical fibers are used as the LMR supporting coatings. These resonances shift to the red as a function of the external refractive index, enabling the fabrication of robust and highly reproducible wavelength-based optical fiber refractometers. The obtained SnO2-based refractometer shows an average sensitivity of 7198 nm/refractive index unit (RIU) in the range 1.333-1.420 RIU.Publication Open Access Sensitivity enhancement experimental demonstration using a low cutoff wavelength SMS modified structure coated with a pH sensitive film(Elsevier, 2018) RodrĆguez RodrĆguez, Wenceslao Eduardo; Del Villar, Ignacio; Ruiz ZamarreƱo, Carlos; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; RodrĆguez RodrĆguez, Adolfo JosuĆ©; DomĆnguez Cruz, RenĆ©; IngenierĆa ElĆ©ctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThe multimode interference (MMI) effect in a single mode-multimode-single mode (SMS) can be used fordevelopment of wavelength shift detection based sensors. In this work, the focus is centered on obtainingwavelength shifts with low cutoff single mode fibers, which allows exploring the wavelength range from600 to 1000 nm, where optical sources and detectors are less expensive than at longer wavelengths. Inaddition, the application of a reduction in the fiber diameter of the SMS structure by means of HF etching,combined with the deposition of a thin-film, enables to enhance the sensitivity of the devices at thesame time the objective mentioned before is achieved. In this sense, the effect of the deposition of a pHsensitive thin-film on SMS structures with different diameters allowed attaining a maximum sensitivityof 15 nm per pH unit in the range from pH 4 to pH 6, which improves by a factor of 3 the sensitivity ofSMS sensors without etching operating at longer wavelengths.Publication Open Access D-shape optical fiber pH sensor based on lossy mode resonances (LMRs)(IEEE, 2016-01-07) Zubiate Orzanco, Pablo; Ruiz ZamarreƱo, Carlos; Del Villar, Ignacio; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio IngeniaritzaThe fabrication and characterization of an optical fiber pH sensor based on Lossy Mode Resonances (LMRs) is presented. PAH/PAA polymeric thin-films fabricated onto side-polished D-shaped optical fibers are used as LMR supporting coatings. The thickness of PAH/PAA coatings can be modified as a function of the external medium pH. As a consequence of this variation, the effective refractive index of the structure will change, producing a shift of the LMR. The fabricated sensor has been used to measure pH from 4.0 to 5.0. This pH sensor showed a sensitivity of 101.3 nm per pH unit, which means a resolution of ~6Ć10-4 pH units by using a conventional communications Optical Spectrum Analyzer (OSA), which is an improvement over commercial pH sensors.Publication Open Access Optical sensors based on lossy-mode resonances(Elsevier Science, 2017) MatĆas Maestro, Ignacio; Ascorbe Muruzabal, JoaquĆn; Acha MorrĆ”s, Nerea de; López Torres, Diego; Zubiate Orzanco, Pablo; SĆ”nchez ZĆ”bal, Pedro; Urrutia Azcona, Aitor; Socorro LerĆ”noz, AbiĆ”n Bentor; Rivero Fuente, Pedro J.; HernĆ”ez SĆ”enz de Zaitigui, Miguel; ElosĆŗa Aguado, CĆ©sar; Goicoechea FernĆ”ndez, Javier; BariĆ”in Aisa, CĆ”ndido; Corres Sanz, JesĆŗs MarĆa; Ruiz ZamarreƱo, Carlos; Arregui San MartĆn, Francisco Javier; Del Villar, Ignacio; IngenierĆa ElĆ©ctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCPublication Open Access Giant sensitivity of optical fiber sensors by means of lossy moderesonance(Elsevier, 2016) Arregui San MartĆn, Francisco Javier; Del Villar, Ignacio; Ruiz ZamarreƱo, Carlos; Zubiate Orzanco, Pablo; MatĆas Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica y ElectrónicaHere we show an optical refractometer with a giant sensitivity of 304,360 nm per refractive index unit(nm/RIU). This sensitivity corresponds to a resolution of 3.28 Ć 10ā9RIU if a standard optical spectrumanalyzer with a resolution of 1 pm is used. This record sensitivity is obtained by means of a lossy moderesonance (LMR) optical fiber sensor in a surrounding media with refractive index around 1.45. Thisachievement implies that the utilization of the LMR phenomenon opens the door to devices and systemsthat can beat, in terms of sensitivity, those used currently in real-time biomolecular analysis such assurface plasmon resonance (SPR) devices.Publication Open Access A comprehensive review of optical fiber refractometers: toward a standard comparative criterion(Wiley, 2019) Urrutia Azcona, Aitor; Del Villar, Ignacio; Zubiate Orzanco, Pablo; Ruiz ZamarreƱo, Carlos; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThanks to the peculiarities of optical fiber and its ability to be combined with nanotechnology, precise and accurate measurements of the changes in optical properties (i.e., refractive index) of the medium surrounding the fiber are becoming possible with a high degree of performance. Thus, optical fiber sensors (OFSs) are increasingly finding applications in biochemistry and biomedicine. Here, all types of optical fiber refractometers are covered, and they are classified into three main groups: interferometers, grating-based structures, and resonance-based structures (the resonance is induced by coating the optical fiber sensor with a thin film). The performance of these different structures is compared by means of the most common parameters: sensitivity, full width at half minimum or maximum, figure of merit, and quality factor. The aim here is to provide a reliable and easy-to-use tool to compare the performance of the most recent developments on fiber optic refractometers.Publication Open Access D-shape optical fiber refractometer based on TM and TE lossy mode resonances(SPIE, 2014) Zubiate Orzanco, Pablo; Ruiz ZamarreƱo, Carlos; Del Villar, Ignacio; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio IngeniaritzaThe fabrication and characterization of an optical fiber refractometer based on Lossy Mode Resonances (LMR) is presented. TiO2/ poly (sodium 4-styrenesulfonate) coatings deposited on side-polished D-shaped optical fibers are used as LMR supporting coatings. LMRs are sensitive to the external medium refractive index and D-shaped optical fibers enable the observation of TE and TM LMR polarizations. These refractometers based on TE and TM LMR showed an average sensitivity of 2737 nm/RIU and 2893 nm/RIU respectively for a surrounding medium refractive index (SMRI) range from 1.35 to 1.41.Publication Open Access Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations(Optica Publishing Group, 2013) Ruiz ZamarreƱo, Carlos; Zubiate Orzanco, Pablo; Sagüés GarcĆa, Mikel; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; IngenierĆa ElĆ©ctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThis Letter, presents the fabrication of lossy mode resonance (LMR) devices based on titanium dioxide (TiO2)/ poly(sodium 4-styrenesulfonate) (PSS) coatings deposited on side-polished D-shaped optical fibers. TiO2 thin films have been obtained by means of the layer-by-layer (LbL) self-assembly technique. LbL enables us to produce smooth and homogeneous coatings on the polished side of the fiber. This permits us to couple light from the waveguide to the TiO2-coating/external medium region at specific wavelength ranges. The generation of LMRs depends on the coating thickness, so that thicker coatings can produce more resonances. LMRs are sensitive to the external medium refractive index, which allows its utilization as refractometers. The characteristic D-shaped architecture of the devices employed in this Letter enables us to distinguish TE and TM polarizations, which had not been possible before with regular optical fibers due to their cylindrical symmetry. The results presented here show for the first time the experimental demonstration of the generation of LMRs produced by both TM and TE polarizations. More specifically, for these TiO2/PSS thin films, the TM and TM modes of the LMRs show a wavelength shift of 226 nm for the first-order LMR and 56 nm for the second-order LMR.Publication Open Access Micro and nanostructured materials for the development of optical fibre sensors(MDPI, 2017) ElosĆŗa Aguado, CĆ©sar; Arregui San MartĆn, Francisco Javier; Del Villar, Ignacio; Ruiz ZamarreƱo, Carlos; Corres Sanz, JesĆŗs MarĆa; BariĆ”in Aisa, CĆ”ndido; Goicoechea FernĆ”ndez, Javier; HernĆ”ez SĆ”enz de Zaitigui, Miguel; Rivero Fuente, Pedro J.; Socorro LerĆ”noz, AbiĆ”n Bentor; Urrutia Azcona, Aitor; SĆ”nchez ZĆ”bal, Pedro; Zubiate Orzanco, Pablo; López Torres, Diego; Acha MorrĆ”s, Nerea de; Ascorbe Muruzabal, JoaquĆn; Ozcariz Celaya, Aritz; MatĆas Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica y ElectrónicaThe measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently.Publication Open Access Lossy mode resonances biosensor for the detection of C-reactive protein(Optica Publishing Group, 2016) Zubiate Orzanco, Pablo; Ruiz ZamarreƱo, Carlos; SĆ”nchez ZĆ”bal, Pedro; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate PublikoaThe fabrication and characterization of optical fiber biosensor based on Lossy Mode Resonances (LMR) to detect C-reactive protein (CRP) are presented. Indium tin oxide (ITO) coatings deposited on side-polished D-shaped optical fibers are used as LMR supporting coatings. The aptamer was immobilized on the ITO film using the Layer-by-Layer (LbL) nano-assembly process. The optical fiber sensor presented shows a high selectivity and low limit detection.