Ruiz ZamarreƱo, Carlos

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ruiz ZamarreƱo

First Name

Carlos

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 92
  • PublicationOpen Access
    Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study
    (Optical Society of America, 2010) Del Villar, Ignacio; Ruiz Zamarreño, Carlos; HernÔez SÔenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Two optical fiber devices have been coated in parallel: a long period fiber grating (LPFG) and a cladding-removed multimode optical fiber (CRMOF). The progressive coating of the LPFG by means of the layer-by-layer electrostatic-self-assembly, permits to observe a resonance wavelength shift of the attenuation bands in the transmission spectrum. The cause of this wavelength shift is the reorganization of the cladding mode effective indices. The cause of this modal reorganization can be understood with the results observed in the CRMOF coated in parallel. A lossy-moderesonance (LMR) is generated in the same wavelength range of the LPFG attenuation bands analyzed. Moreover, the thickness range where the wavelength shift of the LPFG attenuation bands occurs coincides exactly with the thickness range where the LMR can be visualized in the transmission spectrum. These phenomena are analyzed theoretically and corroborated experimentally. The advantages and disadvantages of both optical fiber devices are explained.
  • PublicationOpen Access
    Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism
    (SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; FernÔndez Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    D-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.
  • PublicationOpen Access
    Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations
    (Optica Publishing Group, 2013) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Sagüés García, Mikel; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This Letter, presents the fabrication of lossy mode resonance (LMR) devices based on titanium dioxide (TiO2)/ poly(sodium 4-styrenesulfonate) (PSS) coatings deposited on side-polished D-shaped optical fibers. TiO2 thin films have been obtained by means of the layer-by-layer (LbL) self-assembly technique. LbL enables us to produce smooth and homogeneous coatings on the polished side of the fiber. This permits us to couple light from the waveguide to the TiO2-coating/external medium region at specific wavelength ranges. The generation of LMRs depends on the coating thickness, so that thicker coatings can produce more resonances. LMRs are sensitive to the external medium refractive index, which allows its utilization as refractometers. The characteristic D-shaped architecture of the devices employed in this Letter enables us to distinguish TE and TM polarizations, which had not been possible before with regular optical fibers due to their cylindrical symmetry. The results presented here show for the first time the experimental demonstration of the generation of LMRs produced by both TM and TE polarizations. More specifically, for these TiO2/PSS thin films, the TM and TM modes of the LMRs show a wavelength shift of 226 nm for the first-order LMR and 56 nm for the second-order LMR.
  • PublicationOpen Access
    Resonance-based optical gas sensors
    (IEEE, 2025-07-02) Gallego Martínez, Elieser Ernesto; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Gas sensors play a critical role in numerous human activities. Their necessity continues to grow across diverse fields as technological advancements drive demand for precision agriculture and bioengineering among other applications. Among existing sensor technologies, optical gas sensors stand out due to their ability to operate remotely in high-risk environments while remaining unaffected by electromagnetic interference. Resonance-based optical sensors offer targeted gas detection through the functionalization of their sensitive surfaces. This work focuses on reviewing the state of the art in resonance-based optical gas sensors (ROGSs), addressing their fundamental principles, recent advances in fabrication processes, waveguide designs, and materials employed both for resonance generation and as sensitive coatings. In addition, the review examines achieved sensitivity, emerging applications, and key developments in the field, including those efforts on improving ROGS performances by means of artificial intelligence techniques. The study encompasses optical sensors leveraging surface plasmon resonance, lossy mode resonance, and hyperbolic mode resonanceĀæthe latter representing a notable breakthrough in recent years as a particular case of Bloch surface waves.
  • PublicationOpen Access
    Sensitivity enhancement experimental demonstration using a low cutoff wavelength SMS modified structure coated with a pH sensitive film
    (Elsevier, 2018) Rodríguez Rodríguez, Wenceslao Eduardo; Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Rodríguez Rodríguez, Adolfo Josué; Domínguez Cruz, René; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    The multimode interference (MMI) effect in a single mode-multimode-single mode (SMS) can be used fordevelopment of wavelength shift detection based sensors. In this work, the focus is centered on obtainingwavelength shifts with low cutoff single mode fibers, which allows exploring the wavelength range from600 to 1000 nm, where optical sources and detectors are less expensive than at longer wavelengths. Inaddition, the application of a reduction in the fiber diameter of the SMS structure by means of HF etching,combined with the deposition of a thin-film, enables to enhance the sensitivity of the devices at thesame time the objective mentioned before is achieved. In this sense, the effect of the deposition of a pHsensitive thin-film on SMS structures with different diameters allowed attaining a maximum sensitivityof 15 nm per pH unit in the range from pH 4 to pH 6, which improves by a factor of 3 the sensitivity ofSMS sensors without etching operating at longer wavelengths.
  • PublicationOpen Access
    D-shape optical fiber pH sensor based on lossy mode resonances (LMRs)
    (IEEE, 2016-01-07) Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    The fabrication and characterization of an optical fiber pH sensor based on Lossy Mode Resonances (LMRs) is presented. PAH/PAA polymeric thin-films fabricated onto side-polished D-shaped optical fibers are used as LMR supporting coatings. The thickness of PAH/PAA coatings can be modified as a function of the external medium pH. As a consequence of this variation, the effective refractive index of the structure will change, producing a shift of the LMR. The fabricated sensor has been used to measure pH from 4.0 to 5.0. This pH sensor showed a sensitivity of 101.3 nm per pH unit, which means a resolution of ~6Ɨ10-4 pH units by using a conventional communications Optical Spectrum Analyzer (OSA), which is an improvement over commercial pH sensors.
  • PublicationOpen Access
    Beyond near-infrared lossy mode resonances with fluoride glass optical fiber
    (Optica, 2021) Vitoria Pascual, Ignacio; Ruiz Zamarreño, Carlos; Ozcariz Celaya, Aritz; Imas GonzÔlez, José Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The objective of this Letter consists of the exploration of the lossy mode resonance (LMR) phenomenon beyond the nearinfrared region and specifically in the short wave infrared region (SWIR) and medium wave infrared region (MWIR). The experimental and theoretical results show for the first time, to the best of our knowledge, not only LMRs in these regions, but also the utilization of fluoride glass optical fiber associated with this phenomenon. The fabricated devices consist of a nanometric thin-film of titanium dioxide used as LMR generating material, which probed extraordinary sensitivities to external refractive index (RI) variations. RI sensitivity was studied in the SWIR and MWIR under different conditions, such as the LMR wavelength range or the order of resonance, showing a tremendous potential for the detection of minute concentrations of gaseous or biological compounds in different media.
  • PublicationOpen Access
    Sensors based on thin-film coated cladding removed multimode optical fiber and single-mode multimode single-mode fiber: a comparative study
    (Hindawi Publishing Corporation, 2015) Del Villar, Ignacio; Socorro LerÔnoz, AbiÔn Bentor; HernÔez SÔenz de Zaitigui, Miguel; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; SÔnchez ZÔbal, Pedro; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Two simple optical fibre structures that do not require the inscription of a grating, a cladding removed multimode optical fibre (CRMOF) and a single-mode multimode single-mode structure (SMS), are compared in terms of their adequateness for sensing once they are coated with thin-films.The thin-film deposited (TiO2/PSS) permits increasing the sensitivity to surrounding medium refractive index. The results obtained can be extrapolated to other fields such as biological or chemical sensing just by replacing the thin-film by a specific material.
  • PublicationOpen Access
    SnO2 based optical fiber refractometers
    (SPIE, 2012) SÔnchez ZÔbal, Pedro; Ruiz Zamarreño, Carlos; HernÔez SÔenz de Zaitigui, Miguel; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    In this work, the fabrication and characterization of refractometers based on lossy mode resonances (LMR) is presented. Tin dioxide (SnO2) films deposited on optical fibers are used as the LMR supporting coatings. These resonances shift to the red as a function of the external refractive index, enabling the fabrication of robust and highly reproducible wavelength-based optical fiber refractometers. The obtained SnO2-based refractometer shows an average sensitivity of 7198 nm/refractive index unit (RIU) in the range 1.333-1.420 RIU.
  • PublicationOpen Access
    Design rules for lossy mode resonance based sensors
    (Optical Society of America, 2012) Del Villar, Ignacio; HernÔez SÔenz de Zaitigui, Miguel; Ruiz Zamarreño, Carlos; SÔnchez ZÔbal, Pedro; FernÔndez Valdivielso, Carlos; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    Lossy mode resonances can be obtained in the transmission spectrum of cladding removed multimode optical fiber coated with a thin-film. The sensitivity of these devices to changes in the properties of the coating or the surrounding medium can be optimized by means of the adequate parameterization of the coating refractive index, the coating thickness and the surrounding medium refractive index (SMRI). Some basic rules of design, which enable the selection of the best parameters for each specific sensing application, are indicated in this work.