Ruiz ZamarreƱo, Carlos

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ruiz ZamarreƱo

First Name

Carlos

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 90
  • PublicationOpen Access
    Micro and nanostructured materials for the development of optical fibre sensors
    (MDPI, 2017) Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Corres Sanz, Jesús María; BariÔin Aisa, CÔndido; Goicoechea FernÔndez, Javier; HernÔez SÔenz de Zaitigui, Miguel; Rivero Fuente, Pedro J.; Socorro LerÔnoz, AbiÔn Bentor; Urrutia Azcona, Aitor; SÔnchez ZÔbal, Pedro; Zubiate Orzanco, Pablo; López Torres, Diego; Acha MorrÔs, Nerea de; Ascorbe Muruzabal, Joaquín; Ozcariz Celaya, Aritz; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently.
  • PublicationOpen Access
    Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers?
    (Nature Publishing Group, 2017) Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A tin dioxide thin layer has been studied in order to improve the sensitivity of lossy mode resonances (LMR) based sensors. The effects of the thin film thickness and the polarization of light in a SnO2 coated D-shaped single mode optical fiber have been evaluated. The optimization of such parameters in the fabrication of refractometers have led to an unprecedented sensitivity of over one million nanometers per refractive index unit (RIU), which means a sensitivity below 10^(āˆ’9) RIU with a pm resolution detector. This achievement is a milestone for the development of new high sensitivity devices and opens the door to new industrial applications, such as gear oil degradation, or biomedical devices where previous devices could not provide enough sensitivity.
  • PublicationOpen Access
    Low cutoff wavelength etched SMS structures towards verification of the quality of automotive antifreeze
    (IEEE, 2020) Rodríguez Rodríguez, Wenceslao Eduardo; Rodríguez Rodríguez, Adolfo Josué; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Zúñiga Alanís, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua, 2019 904 116; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    Optical fiber single mode-multimode-single mode (SMS) structures can be used as wavelength detection-based sensors. In this work, we focus on the performance at short wavelengths, where optical sources and detectors are less expensive. Here, a self-image band with a high transmission power is monitored in this short-wavelength range. In addition, the diameter and the length of the SMS structure have been optimized in order to improve the sensitivity of the device. In this sense, a maximum refractive index sensitivity of 305 nm/RIU was achieved by an etched SMS with a diameter of 34μ m. Furthermore, the obtained devices were used for testing the quality of automotive coolant and antifreeze liquid.
  • PublicationOpen Access
    Rheumatoid arthritis miRNA biomarker detection by means of LMR based fiber-optic biosensor
    (IEEE, 2020) Imas GonzÔlez, José Javier; Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Campión, J.; SÔnchez-Martín, L.; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    Development of miRNA optical biosensors for disease diagnosis and monitoring has acquired relevance in recent years, due to the clinical importance of miRNA and the inherent advantages of optical sensors. Here, we present the utilization of a fiber optic sensor based on Lossy Mode Resonance (LMR) for the detection of miRNA hsa-miR-223, a promising biomarker for the diagnosis of rheumatoid arthritis (RA).
  • PublicationOpen Access
    D-shape optical fiber pH sensor based on lossy mode resonances (LMRs)
    (IEEE, 2016-01-07) Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    The fabrication and characterization of an optical fiber pH sensor based on Lossy Mode Resonances (LMRs) is presented. PAH/PAA polymeric thin-films fabricated onto side-polished D-shaped optical fibers are used as LMR supporting coatings. The thickness of PAH/PAA coatings can be modified as a function of the external medium pH. As a consequence of this variation, the effective refractive index of the structure will change, producing a shift of the LMR. The fabricated sensor has been used to measure pH from 4.0 to 5.0. This pH sensor showed a sensitivity of 101.3 nm per pH unit, which means a resolution of ~6Ɨ10-4 pH units by using a conventional communications Optical Spectrum Analyzer (OSA), which is an improvement over commercial pH sensors.
  • PublicationOpen Access
    Air bubble detection in water flow by means of ai-assisted infrared reflection system
    (IEEE, 2024-06-26) Gracia Moisés, Ander; Vitoria Pascual, Ignacio; Imas GonzÔlez, José Javier; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system’s design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system’s ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.
  • PublicationOpen Access
    Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection
    (Elsevier, 2019) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Egea Urra, Josune; FernÔndez Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Chiavaioli, Francesco; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    D-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on lossy mode resonance in fiber optics are presented. The unique features of specialty fibers in light management integrated with microfluidics allow detecting D-dimer in human serum with a detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value. Comparison of the results achieved with mass-spectrometry-based proteomics, which allows for the identification of beta- and gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer. Therefore, this technology potentially represents a paradigm shift in the development of a simple, high-specificity and label-free biosensing platform, which can be applied to speed up diagnostic healthcare processes of venous thromboembolism toward an early diagnostic and personalized treatment system.
  • PublicationOpen Access
    Edge device for ultraviolet fluorescence inspection of photovoltaic panels
    (IEEE, 2023) Di Renzo, André Biffe; Ruiz Zamarreño, Carlos; Martelli, Cicero; Cardozo da Silva, Jean Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    Regular inspection of photovoltaic panels plays a key role in maximizing performance, ensuring safety, and extending the life of solar plants. This paper presents the construction of a 6W 365 nm ultraviolet light source for ultraviolet fluorescence (UVF) inspections coupled with an edge device used to capture and process the fluorescence images. In addition, an artificial intelligence (AI) algorithm was applied to identify and classify automatically healthy and defective cells in the captured images. The trained AI presents a precision of 89%, and this result shows that the development of an ultraviolet light source coupled with an edge device for automatic cell classification could help with the maintenance staff to make routine UVF inspections to identify possible defects in cell structure, which is the main contribution of the presented work.
  • PublicationOpen Access
    High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices
    (Elsevier, 2017) Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; SÔnchez ZÔbal, Pedro; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work presents the development of high sensitive, selective, fast and reusable C-reactive protein (CRP) aptasensors. This novel approach takes advantage of the utilization of high sensitive refractometers based on Lossy Mode Resonances generated by thin indium tin oxide (ITO) films fabricated onto the planar region of D-shaped optical fibers. CRP selectivity is obtained by means of the adhesion of a CRP specific aptamer chain onto the ITO film using the Layer-by-Layer (LbL) nano-assembly fabrication process. The sensing mechanism relies on resonance wavelength shifts originated by refractive index variations of the aptamer chain in presence of the target molecule. Fabricated devices show high selectivity to CRP when compared with other target molecules, such as urea or creatinine, while maintaining a low detection limit (0.0625 mg/L) and fast response time (61 s). Additionally, these sensors show a repetitive response for several days and are reusable after a cleaning process in ultrapure water.
  • PublicationOpen Access
    Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study
    (Optical Society of America, 2010) Del Villar, Ignacio; Ruiz Zamarreño, Carlos; HernÔez SÔenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Two optical fiber devices have been coated in parallel: a long period fiber grating (LPFG) and a cladding-removed multimode optical fiber (CRMOF). The progressive coating of the LPFG by means of the layer-by-layer electrostatic-self-assembly, permits to observe a resonance wavelength shift of the attenuation bands in the transmission spectrum. The cause of this wavelength shift is the reorganization of the cladding mode effective indices. The cause of this modal reorganization can be understood with the results observed in the CRMOF coated in parallel. A lossy-moderesonance (LMR) is generated in the same wavelength range of the LPFG attenuation bands analyzed. Moreover, the thickness range where the wavelength shift of the LPFG attenuation bands occurs coincides exactly with the thickness range where the LMR can be visualized in the transmission spectrum. These phenomena are analyzed theoretically and corroborated experimentally. The advantages and disadvantages of both optical fiber devices are explained.