Ruiz ZamarreƱo, Carlos
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ruiz ZamarreƱo
First Name
Carlos
person.page.departamento
IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
90 results
Search Results
Now showing 1 - 10 of 90
Publication Open Access Micro and nanostructured materials for the development of optical fibre sensors(MDPI, 2017) ElosĆŗa Aguado, CĆ©sar; Arregui San MartĆn, Francisco Javier; Del Villar, Ignacio; Ruiz ZamarreƱo, Carlos; Corres Sanz, JesĆŗs MarĆa; BariĆ”in Aisa, CĆ”ndido; Goicoechea FernĆ”ndez, Javier; HernĆ”ez SĆ”enz de Zaitigui, Miguel; Rivero Fuente, Pedro J.; Socorro LerĆ”noz, AbiĆ”n Bentor; Urrutia Azcona, Aitor; SĆ”nchez ZĆ”bal, Pedro; Zubiate Orzanco, Pablo; López Torres, Diego; Acha MorrĆ”s, Nerea de; Ascorbe Muruzabal, JoaquĆn; Ozcariz Celaya, Aritz; MatĆas Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica y ElectrónicaThe measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently.Publication Open Access Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers?(Nature Publishing Group, 2017) Ozcariz Celaya, Aritz; Ruiz ZamarreƱo, Carlos; Zubiate Orzanco, Pablo; Arregui San MartĆn, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate PublikoaA tin dioxide thin layer has been studied in order to improve the sensitivity of lossy mode resonances (LMR) based sensors. The effects of the thin film thickness and the polarization of light in a SnO2 coated D-shaped single mode optical fiber have been evaluated. The optimization of such parameters in the fabrication of refractometers have led to an unprecedented sensitivity of over one million nanometers per refractive index unit (RIU), which means a sensitivity below 10^(ā9) RIU with a pm resolution detector. This achievement is a milestone for the development of new high sensitivity devices and opens the door to new industrial applications, such as gear oil degradation, or biomedical devices where previous devices could not provide enough sensitivity.Publication Open Access Low cutoff wavelength etched SMS structures towards verification of the quality of automotive antifreeze(IEEE, 2020) RodrĆguez RodrĆguez, Wenceslao Eduardo; RodrĆguez RodrĆguez, Adolfo JosuĆ©; Ruiz ZamarreƱo, Carlos; Del Villar, Ignacio; Zúñiga AlanĆs, Manuel; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua, 2019 904 116; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26Optical fiber single mode-multimode-single mode (SMS) structures can be used as wavelength detection-based sensors. In this work, we focus on the performance at short wavelengths, where optical sources and detectors are less expensive. Here, a self-image band with a high transmission power is monitored in this short-wavelength range. In addition, the diameter and the length of the SMS structure have been optimized in order to improve the sensitivity of the device. In this sense, a maximum refractive index sensitivity of 305 nm/RIU was achieved by an etched SMS with a diameter of 34μ m. Furthermore, the obtained devices were used for testing the quality of automotive coolant and antifreeze liquid.Publication Open Access Rheumatoid arthritis miRNA biomarker detection by means of LMR based fiber-optic biosensor(IEEE, 2020) Imas GonzĆ”lez, JosĆ© Javier; Ruiz ZamarreƱo, Carlos; Zubiate Orzanco, Pablo; Campión, J.; SĆ”nchez-MartĆn, L.; MatĆas Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26Development of miRNA optical biosensors for disease diagnosis and monitoring has acquired relevance in recent years, due to the clinical importance of miRNA and the inherent advantages of optical sensors. Here, we present the utilization of a fiber optic sensor based on Lossy Mode Resonance (LMR) for the detection of miRNA hsa-miR-223, a promising biomarker for the diagnosis of rheumatoid arthritis (RA).Publication Open Access D-shape optical fiber pH sensor based on lossy mode resonances (LMRs)(IEEE, 2016-01-07) Zubiate Orzanco, Pablo; Ruiz ZamarreƱo, Carlos; Del Villar, Ignacio; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio IngeniaritzaThe fabrication and characterization of an optical fiber pH sensor based on Lossy Mode Resonances (LMRs) is presented. PAH/PAA polymeric thin-films fabricated onto side-polished D-shaped optical fibers are used as LMR supporting coatings. The thickness of PAH/PAA coatings can be modified as a function of the external medium pH. As a consequence of this variation, the effective refractive index of the structure will change, producing a shift of the LMR. The fabricated sensor has been used to measure pH from 4.0 to 5.0. This pH sensor showed a sensitivity of 101.3 nm per pH unit, which means a resolution of ~6Ć10-4 pH units by using a conventional communications Optical Spectrum Analyzer (OSA), which is an improvement over commercial pH sensors.Publication Open Access Air bubble detection in water flow by means of ai-assisted infrared reflection system(IEEE, 2024-06-26) Gracia MoisĆ©s, Ander; Vitoria Pascual, Ignacio; Imas GonzĆ”lez, JosĆ© Javier; Ruiz ZamarreƱo, Carlos; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThis letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The systemās design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the systemās ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.Publication Open Access Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection(Elsevier, 2019) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz ZamarreƱo, Carlos; Egea Urra, Josune; FernĆ”ndez Irigoyen, JoaquĆn; Giannetti, Ambra; Baldini, Francesco; DĆaz Lucas, Silvia; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; SantamarĆa MartĆnez, Enrique; Chiavaioli, Francesco; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on lossy mode resonance in fiber optics are presented. The unique features of specialty fibers in light management integrated with microfluidics allow detecting D-dimer in human serum with a detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value. Comparison of the results achieved with mass-spectrometry-based proteomics, which allows for the identification of beta- and gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer. Therefore, this technology potentially represents a paradigm shift in the development of a simple, high-specificity and label-free biosensing platform, which can be applied to speed up diagnostic healthcare processes of venous thromboembolism toward an early diagnostic and personalized treatment system.Publication Open Access Edge device for ultraviolet fluorescence inspection of photovoltaic panels(IEEE, 2023) Di Renzo, AndrĆ© Biffe; Ruiz ZamarreƱo, Carlos; Martelli, Cicero; Cardozo da Silva, Jean Carlos; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio IngeniaritzaRegular inspection of photovoltaic panels plays a key role in maximizing performance, ensuring safety, and extending the life of solar plants. This paper presents the construction of a 6W 365 nm ultraviolet light source for ultraviolet fluorescence (UVF) inspections coupled with an edge device used to capture and process the fluorescence images. In addition, an artificial intelligence (AI) algorithm was applied to identify and classify automatically healthy and defective cells in the captured images. The trained AI presents a precision of 89%, and this result shows that the development of an ultraviolet light source coupled with an edge device for automatic cell classification could help with the maintenance staff to make routine UVF inspections to identify possible defects in cell structure, which is the main contribution of the presented work.Publication Open Access High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices(Elsevier, 2017) Zubiate Orzanco, Pablo; Ruiz ZamarreƱo, Carlos; SĆ”nchez ZĆ”bal, Pedro; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate PublikoaThis work presents the development of high sensitive, selective, fast and reusable C-reactive protein (CRP) aptasensors. This novel approach takes advantage of the utilization of high sensitive refractometers based on Lossy Mode Resonances generated by thin indium tin oxide (ITO) films fabricated onto the planar region of D-shaped optical fibers. CRP selectivity is obtained by means of the adhesion of a CRP specific aptamer chain onto the ITO film using the Layer-by-Layer (LbL) nano-assembly fabrication process. The sensing mechanism relies on resonance wavelength shifts originated by refractive index variations of the aptamer chain in presence of the target molecule. Fabricated devices show high selectivity to CRP when compared with other target molecules, such as urea or creatinine, while maintaining a low detection limit (0.0625 mg/L) and fast response time (61 s). Additionally, these sensors show a repetitive response for several days and are reusable after a cleaning process in ultrapure water.Publication Open Access Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study(Optical Society of America, 2010) Del Villar, Ignacio; Ruiz ZamarreƱo, Carlos; HernĆ”ez SĆ”enz de Zaitigui, Miguel; Arregui San MartĆn, Francisco Javier; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaTwo optical fiber devices have been coated in parallel: a long period fiber grating (LPFG) and a cladding-removed multimode optical fiber (CRMOF). The progressive coating of the LPFG by means of the layer-by-layer electrostatic-self-assembly, permits to observe a resonance wavelength shift of the attenuation bands in the transmission spectrum. The cause of this wavelength shift is the reorganization of the cladding mode effective indices. The cause of this modal reorganization can be understood with the results observed in the CRMOF coated in parallel. A lossy-moderesonance (LMR) is generated in the same wavelength range of the LPFG attenuation bands analyzed. Moreover, the thickness range where the wavelength shift of the LPFG attenuation bands occurs coincides exactly with the thickness range where the LMR can be visualized in the transmission spectrum. These phenomena are analyzed theoretically and corroborated experimentally. The advantages and disadvantages of both optical fiber devices are explained.