Ruiz ZamarreƱo, Carlos
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ruiz ZamarreƱo
First Name
Carlos
person.page.departamento
IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
14 results
Search Results
Now showing 1 - 10 of 14
Publication Embargo Hyperbolic mode resonance-based acetone optical sensors powered by ensemble learning(Elsevier, 2024-11-01) Gallego MartĆnez, Elieser Ernesto; Ruiz ZamarreƱo, Carlos; Meurs, Joris; Cristescu, Simona M.; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate PublikoaThe current work describes and compares the performance of hyperbolic mode resonance (HMR)-based sensors for the detection of acetone at parts per billion (ppb) concentrations using ensemble machine learning (EML) techniques. A pair of HMR based-sensors with resonances located in the visible (VIS) and mid infrared (MIR) regions were obtained in order to train a set of ensemble machine learning models. The response of the detection system formed by both devices in the VIS and MIR regions, with the help of the EML system, allowed the limit of detection (LoD) of the sensors to be reduced by an order of magnitude. It is the first time that HMR-based sensors are shown in practical applications, at the same time that their performance is improved using EML techniques. This opens new avenues for the use of this type of HMR-based sensors for the detection of other substances, in addition to improving the performance of any optoelectronic sensor using EML techniques.Publication Open Access A comprehensive review: materials for the fabrication of optical fiber refractometers based on lossy mode resonance(MDPI, 2020) Ozcariz Celaya, Aritz; Ruiz ZamarreƱo, Carlos; Arregui San MartĆn, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26Lossy mode resonance based sensors have been extensively studied in recent years. The versatility of the lossy mode resonance phenomenon has led to the development of sensors based on different configurations that make use of a wide range of materials. The coating material is one of the key elements in the performance of a refractometer. This review paper intends to provide a global view of the wide range of coating materials available for the development of lossy mode resonance based refractometers.Publication Embargo Photoisomerization-induced LMR shift for UV radiation detection(Elsevier, 2024) Gallego MartĆnez, Elieser Ernesto; Ruiz ZamarreƱo, Carlos; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis work presents an optical sensor for ultraviolet radiation (UV) detection, based on the combined effects of Lossy Mode Resonance (LMR) in the mid infrared (MIR) spectral region and the photoisomerization of a polymeric dye coating. LMR was obtained by means of a sputtered SnO2 thin film on a tetrafluoroethylene-perfluoro (or alkoxy Vinyl Ether, PFA) substrate, along with a photo sensitive coating based on poly R-478. Obtained devices shown response and recovery times of 12 and 43 s, respectively, for an UV excitation of 71 mW at 365 nm. Sensitivity as a function of the excitation wavelength was studied with the highest value of 26 nm/mW obtained at 280 nm. For this excitation wavelength, the limit of detection (LoD) obtained was 0.024 mW. Four different excitation wavelengths were used to cover all UV regions (280, 310, 365 and 395 nm). All measurements were performed at room temperature and humidity (25 ĀæC ± 1 ĀæC and 13% R.H. ± 2% R.H. respectively). As far as we know, it is the first time that the LMR effect has been recognized in combination with a photoisomerization process.Publication Open Access Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism(SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz ZamarreƱo, Carlos; FernĆ”ndez Irigoyen, JoaquĆn; Giannetti, Ambra; Baldini, Francesco; DĆaz Lucas, Silvia; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; SantamarĆa MartĆnez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de ComunicaciónD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.Publication Open Access Gas detection using LMR-based optical fiber sensors(MDPI, 2018) Dreyer, Uilian JosĆ©; Ozcariz Celaya, Aritz; Ascorbe Muruzabal, JoaquĆn; Zubiate Orzanco, Pablo; Vitoria Pascual, Ignacio; Martelli, Cicero; Cardozo da Silva, Jean Carlos; Ruiz ZamarreƱo, Carlos; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de ComunicaciónThis work presents a first approach to the utilization of Lossy Mode Resonance (LMR) based optical fiber sensors for gas detection. The optical sensor is based on a SnO2 thin-film fabricated onto the core of cladding removed multimode fibers (MMF). The time response of the device to four different gases (NH3, NO, CO2 and O2) was monitored obtaining the best sensitivity for NO whereas the response to NH3 revealed the best repeatability.Publication Open Access Femtomolar detection by nanocoated fiber label-free biosensors(American Chemical Society, 2018) Chiavaioli, Francesco; Zubiate Orzanco, Pablo; Del Villar, Ignacio; Ruiz ZamarreƱo, Carlos; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Arregui San MartĆn, Francisco Javier; MatĆas Maestro, Ignacio; Baldini, Francesco; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThe advent of optical fibre-based biosensors combined with that of nanotechnologies has provided an oppor-tunity for developing in situ, portable, lightweight, versatile and high-performance optical sensing platforms. We report on the generation of lossy mode resonances by the deposition of nm-thick metal oxide films on optical fibres, which makes it possible to measure precisely and accurately the changes in optical properties of the fibre-surrounding medium with very high sensitivity compared to other technology platforms, such as long period gratings or surface plasmon resonances, the gold standard in label-free and real-time biomolecular interaction analysis. This property, combined with the application of specialty structures such as D-shaped fibres, permits enhancing the light-matter interaction. SEM and TEM imaging together with X-EDS tool have been utilised to characterise the two films used, i.e. indium tin oxide and tin dioxide. More-over, the experimental transmission spectra obtained after the deposition of the nanocoatings have been numerically cor-roborated by means of wave propagation methods. With the use of a conventional wavelength interrogation system and ad-hoc developed microfluidics, the shift of the lossy mode resonance can be reliably recorded in response to very low analyte concentrations. Repeated experiments confirm a big leap in performance thanks to the capability to detect femtomolar concentrations in human serum, improving the detection limit by three orders of magnitude when compared with other fibre-based configurations. The biosensor has been regenerated several times by injecting sodium dodecyl sul-phate, which proves the capability of sensor to be reused.Publication Open Access Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection(Elsevier, 2019) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz ZamarreƱo, Carlos; Egea Urra, Josune; FernĆ”ndez Irigoyen, JoaquĆn; Giannetti, Ambra; Baldini, Francesco; DĆaz Lucas, Silvia; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; SantamarĆa MartĆnez, Enrique; Chiavaioli, Francesco; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on lossy mode resonance in fiber optics are presented. The unique features of specialty fibers in light management integrated with microfluidics allow detecting D-dimer in human serum with a detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value. Comparison of the results achieved with mass-spectrometry-based proteomics, which allows for the identification of beta- and gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer. Therefore, this technology potentially represents a paradigm shift in the development of a simple, high-specificity and label-free biosensing platform, which can be applied to speed up diagnostic healthcare processes of venous thromboembolism toward an early diagnostic and personalized treatment system.Publication Open Access Optical biosensors: a quick overview(2021) Imas GonzĆ”lez, JosĆ© Javier; Ruiz ZamarreƱo, Carlos; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis work aims to provide a brief overview of the latest trends in the domain of optical biosensors.Publication Open Access LMR-based optical sensor for ethylene detection at visible and mid-infrared regions(IEEE, 2023) Gallego MartĆnez, Elieser Ernesto; Hualde Otamendi, Mikel; Ruiz ZamarreƱo, Carlos; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate PublikoaEthylene monitoring has long been a method of controlling the ripening of climacteric fruits, but it turns out that this gas is an important biomarker in biomedical applications. This work presents an optical gas sensor based on the lossy mode resonance (LMR) effect for ethylene detection in planar waveguide configuration. Two different approaches have been explored: one in the visible (VIS) spectral region and the second one in the mid infrared (MIR) region. Optical resonances have been achieved, in all cases, by means of sputtered tin oxide thin films. Response and recovery times were 54 and 246 s, respectively, for the sensor with the resonance in the VIS region, while the device operating in the MIR obtained response and recovery times of 19 and 47 s, respectively. The sensitivity during ethylene detection varied from 93.8 to 187.5 pm/ppm with the devices working in the VIS and MIR regions, respectively. According to the calibration curve, devices show an ethylene limit of detection (LOD) of 4.0058 and 0.6532 ppm in the VIS and MIR spectral regions, respectively, which finds applications in climacteric fruit ripening assessment as well as hemodialysis control. Cross sensitivity with humidity was also characterized for both devices.Publication Open Access Copper oxide coated D-shaped optical fibers for the development of LMR refractometers(IEEE, 2020) Ozcariz Celaya, Aritz; Vitoria Pascual, Ignacio; Arregui San MartĆn, Francisco Javier; Ruiz ZamarreƱo, Carlos; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26Lossy mode resonance (LMR) based refractometers obtained by means of copper oxide thin-films fabricated onto side-polished (D-shaped) are presented in this work. The high refractive index of copper oxide combined with the propagation mode isolation capabilities of D-shaped fibers allows for the observation of narrow (30 nm) and high sensitive (10,336 nm per refractive index unit) LMRs, which could enable to improve the performance of LMR-based refractometers as well as provide an alternative label-free sensing platform for LMR-based sensors.