Ruiz ZamarreƱo, Carlos

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ruiz ZamarreƱo

First Name

Carlos

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    Optical fiber thermo-refractometer
    (Optica, 2022) Imas GonzÔlez, José Javier; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Cardozo da Silva, Jean Carlos; Oliveira, V.; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This work presents the implementation of a thermo-refractometer, which integrates the measurement of both refractive index and temperature in a single optical fiber structure. To this purpose, a lossy mode resonance (LMR)-based refractometer is obtained by means of the deposition of a titanium dioxide (TiO2) thin film onto a side-polished (D-shaped) single mode fiber. Measurement and subsequent temperature compensation are achieved by means of a fiber Bragg grating (FBG) inscribed in the core of the D-shaped region. The LMR wavelength shift is monitored in transmission while the FBG (FBG peak at 1533 nm) displacement is observed in reflection. The LMR is sensitive to both the surrounding refractive index (SRI), with a sensitivity of 3725.2 nm/RIU in the 1.3324-1.3479 range, and the temperature (- 0.186 nm/°C); while the FBG is only affected by the temperature (32.6 pm/°C in the 25°C - 45°C range). With these values, it is possible to recover the SRI and temperature variations from the wavelength shifts of the LMR and the FBG, constituting a thermo-refractometer, where it is suppressed the effect of the temperature over the refractometer operation, which could cause errors in the fourth or even third decimal of the measured SRI value.
  • PublicationOpen Access
    Beyond near-infrared lossy mode resonances with fluoride glass optical fiber
    (Optica, 2021) Vitoria Pascual, Ignacio; Ruiz Zamarreño, Carlos; Ozcariz Celaya, Aritz; Imas GonzÔlez, José Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The objective of this Letter consists of the exploration of the lossy mode resonance (LMR) phenomenon beyond the nearinfrared region and specifically in the short wave infrared region (SWIR) and medium wave infrared region (MWIR). The experimental and theoretical results show for the first time, to the best of our knowledge, not only LMRs in these regions, but also the utilization of fluoride glass optical fiber associated with this phenomenon. The fabricated devices consist of a nanometric thin-film of titanium dioxide used as LMR generating material, which probed extraordinary sensitivities to external refractive index (RI) variations. RI sensitivity was studied in the SWIR and MWIR under different conditions, such as the LMR wavelength range or the order of resonance, showing a tremendous potential for the detection of minute concentrations of gaseous or biological compounds in different media.
  • PublicationOpen Access
    A comprehensive study of optical resonances in metals, dielectrics, and excitonic materials in double interface structures
    (Elsevier, 2025-02-01) Imas GonzÔlez, José Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Vitoria Pascual, Ignacio; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    From an optical perspective, depending on the relationship between the real (n) and imaginary (k) parts of its refractive index, three broad categories of materials can be distinguished: metals (k Āæ n), dielectrics (n Āæ k), and materials in which n Āæ k (termed here excitonic materials). The modes and optical resonances that appear in a thin film bounded by two dielectrics with similar refractive index, what we call here a double interface structure, have been widely studied in the case of metals, but not for dielectrics, or materials with n Āæ k. In this work, we propose a new approach, based on employing the phase matching condition to correlate the resonances that appear in the wavelength versus incident angle color maps of the reflected power with the modal analysis of the cross section of the structure. This analysis is performed, using an attenuated total reflection (ATR) setup, for thin film materials that belong to each of the mentioned categories: a metal (gold, Au), a dielectric (titanium dioxide, TiO2), and a material with n Āæ k (chromium, Cr). The theoretical analysis is supported with experimental results. It is demonstrated that this method enables to identify any resonance at any wavelength or incident angle, being valid for all three types of materials. Therefore, it is considered the suggested approach will help the research in these materials and in the double interface structure in the optics and photonics field.
  • PublicationOpen Access
    HMR-based optical gas detection with CuO and ZnO coatings
    (IEEE, 2025-07-02) Gallego Martínez, Elieser Ernesto; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work presents the fabrication of hyperbolic mode resonance-based optical sensors by means of sputtered copper oxide (CuO) and zinc oxide (ZnO), and the study of their performance for gas sensing purposes. Two sensors were fabricated in a planar waveguide configuration with an intermediate gold thin film, and resonances were observed in the visible region of the electromagnetic spectrum. Both materials were analyzed with X-ray diffraction techniques, and their response was characterized by different concentrations of a group of gases comprised of nitric oxide, acetylene (C2H2), ethanol, carbon dioxide, and relative humidity. The best performance corresponds to the CuO sensor for C2H2 gas, presenting a sensitivity of 1.11 nm/parts per million (ppm) and a limit of detection of 12.6 ppb, with response and recovery times of 70 and 68 s, respectively. ZnO-based sensors allowed for a comprehensive study of ethanol in a range of thousands of ppm, while CuO-based sensors showed exceptional sensitivity for most gases in the range of a few ppm. All measurements were performed at room temperature.
  • PublicationOpen Access
    Resonance-based optical gas sensors
    (IEEE, 2025-07-02) Gallego Martínez, Elieser Ernesto; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Gas sensors play a critical role in numerous human activities. Their necessity continues to grow across diverse fields as technological advancements drive demand for precision agriculture and bioengineering among other applications. Among existing sensor technologies, optical gas sensors stand out due to their ability to operate remotely in high-risk environments while remaining unaffected by electromagnetic interference. Resonance-based optical sensors offer targeted gas detection through the functionalization of their sensitive surfaces. This work focuses on reviewing the state of the art in resonance-based optical gas sensors (ROGSs), addressing their fundamental principles, recent advances in fabrication processes, waveguide designs, and materials employed both for resonance generation and as sensitive coatings. In addition, the review examines achieved sensitivity, emerging applications, and key developments in the field, including those efforts on improving ROGS performances by means of artificial intelligence techniques. The study encompasses optical sensors leveraging surface plasmon resonance, lossy mode resonance, and hyperbolic mode resonanceĀæthe latter representing a notable breakthrough in recent years as a particular case of Bloch surface waves.
  • PublicationOpen Access
    Lossy mode resonance and hyperbolic mode resonance-based optical sensors by means of Y3Fe5O12 and SrTiO3 films deposition on planar substrates
    (IEEE, 2025-07-02) Correa FernÔndez, Ángel; Gallego Martínez, Elieser Ernesto; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This letter describes the fabrication of sensor devices based on lossy mode resonance (LMR) and hyperbolic mode resonance (HMR) using for the first time as generating materials of the optical resonances both, yttrium iron garnet (Y3Fe5O12) and strontium titanate (SrTiO3) with a film thickness of 739.2 and 158.7 nm for Y3Fe5O12 (YIG) and SrTiO3, respectively. First-order resonances were observed at the visible region of the electromagnetic spectrum for both materials, LMR and HMR phenomena. RF sputtering deposition was used to fabricate metal oxide thin films on coverslips in a planar waveguide configuration, the Au metallic thin films were deposited by pulsed dc sputtering in a magnetron system from Moorfield. All devices were characterized under different surrounding medium refractive index. Sensitivities achieved values of 5862 and 5865 nm/RIU (refractive index unit) for HMR versions of Y3Fe5O12 and SrTiO3r, respectively. In addition, the response of the sensors to relative humidity and different ethanol concentrations was evaluated. The best results correspond to the Y3Fe3O3-based sensor, with a sensitivity of 0.2 nm/ppm and a limit of detection (LOD) of 183 ppm for ethanol, and 64 nm/%RH for RH, with an LOD of 2.23%RH, and because its resonance does not vanish unlike SrTiO3.
  • PublicationOpen Access
    Rheumatoid arthritis miRNA biomarker detection by means of LMR based fiber-optic biosensor
    (IEEE, 2020) Imas GonzÔlez, José Javier; Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Campión, J.; SÔnchez-Martín, L.; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    Development of miRNA optical biosensors for disease diagnosis and monitoring has acquired relevance in recent years, due to the clinical importance of miRNA and the inherent advantages of optical sensors. Here, we present the utilization of a fiber optic sensor based on Lossy Mode Resonance (LMR) for the detection of miRNA hsa-miR-223, a promising biomarker for the diagnosis of rheumatoid arthritis (RA).
  • PublicationOpen Access
    Ammonia gas optical sensor based on lossy mode resonances
    (IEEE, 2023) Armas, Dayron; Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This letter presents the fabrication and characterization of an ammonia (NH 3) gas optical sensor based on lossy mode resonances (LMRs). A chromium (III) oxide (Cr 2 O 3) thin film deposited onto a planar waveguide was used as LMR supporting coating. The obtained LMR shows a maximum attenuation wavelength or resonance wavelength centered at 673 nm. The optical properties of the coating can be modified as a function of the presence and concentration of NH 3 in the external medium. Consequently, the refractive index of the Cr 2 O 3 thin film will change, producing a red-shift of the resonance wavelength. Obtained devices were tested for different concentrations of NH 3 as well as repetitive cycles. Concentrations as low as 10 ppbv of NH 3 were detected at room temperature. Machine learning regression models were used to mitigate the cross-sensitivity of the device under temperature and humidity fluctuations.
  • PublicationOpen Access
    Multi-sensing platform design with a grating-based nanostructure on a coverslip substrate
    (Springer, 2023) Imas GonzÔlez, José Javier; Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Mukhopadhyay, Subhas C.; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Two different thin film designs with a grating pattern are simulated on a soda lime coverslip, which acts as optical waveguide, with the purpose of generating both a lossy mode resonance (LMR) in transmission and reflection bands. This way both phenomena can be made sensitive to different parameters, leading to a multi-sensing device. The first design consists of a grating patterned in a SnO2 thin film deposited on the coverslip. The performance of the device in both transmission and reflection is numerically studied in air for different values of the grating pitch. Small grating pitches (in the order of the µm) are more suitable for generating the reflection bands while larger values (500 µm or more) are required to produce the LMR, when the reflection bands are no longer visible. Due to the inability to obtain both phenomena with this design, a second design is assessed, where the grating is combined with a section of constant thickness. In this case the desired response is obtained, which opens the path to use this device for multi-sensing applications, measuring several parameters at the same time.