Person:
González Morales, Andrea

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

González Morales

First Name

Andrea

person.page.departamento

Ciencias de la Salud

ORCID

0000-0003-3063-1885

person.page.upna

811699

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Oncolytic adenovirus Delta-24-RGD induces a widespread glioma proteotype remodeling during autophagy
    (Elsevier, 2018) González Morales, Andrea; Zabaleta, Aintzane; García Moure, Marc; Alonso Roldán, Marta; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Adenovirus Delta-24-RGD has shown a remarkable efficacy in a phase I clinical trial for glioblastoma. Delta-24-RGD induces autophagy in glioma cells, however, the molecular derangements associated with Delta-24-RGD infection remains poorly understood. Here, proteomics was applied to characterize the glioma metabolic disturbances soon after Delta-24-RGD internalization and late in infection. Minutes post-infection, a rapid survival reprogramming of glioma cells was evidenced by an early c-Jun activation and a time-dependent dephosphorylation of multiple survival kinases. At 48 h post-infection (hpi), a severe intracellular proteostasis impairment was characterized, detecting differentially expressed proteins related to mRNA splicing, cytoskeletal organization, oxidative response, and inflammation. Specific kinase-regulated protein interactomes for Delta-24-RGD-modulated proteome revealed interferences with the activation dynamics of protein kinases C and A (PKC, PKA), tyrosine-protein kinase Src (c-Src), glycogen synthase kinase-3 (GSK-3) as well as serine/threonine-protein phosphatases 1 and 2A (PP1, PP2A) at 48hpi, in parallel with adenoviral protein overproduction. Moreover, the late activation of the nuclear factor kappa B (NF-κB) correlates with the extracellular increment of specific cytokines involved in migration, and activation of different inflammatory cells. Taken together, our integrative analysis provides further insights into the effects triggered by Delta-24-RGD in the modulation of tumor suppression and immune response against glioma. Significance: The current study provides new insights regarding the molecular mechanisms governing the glioma metabolism during Delta-24-RGD oncolytic adenoviral therapy. The compilation and analysis of intracellular and extracellular proteomics have led us to characterize: i) the cell survival reprogramming during Delta-24-RGD internalization, ii) the proteostatic disarrangement induced by Delta-24-RGD during the autophagic stage, iii) the protein interactomes for Delta-24-RGD-modulated proteome, iv) the regulatory effects on kinase dynamics induced by Delta-24-RGD late in infection, and v) the overproduction of multitasking cytokines upon Delta-24-RGD treatment. We consider that the quantitative molecular maps generated in this study may establish the foundations for the development of complementary adenoviral based-vectors to increase the potency against glioma.
  • PublicationOpen Access
    Estudio molecular de las células de glioblastoma multiforme tratadas con el adenovirus oncolítico Delta-24-RGD
    (2019) González Morales, Andrea; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    El tratamiento del glioblastoma multiforme (GBM) con el adenovirus oncolítico Delta-24-RGD, ha demostrado ser seguro y específico. Esta nueva terapia contribuye a la remisión del tumor mediante diversos mecanismos, como la lisis celular y la activación del sistema inmune. No obstante, un alto porcentaje de pacientes no responde adecuadamente a este tratamiento oncolítico, y su esperanza de vida continua siendo baja. Se sabe que el adenovirus Delta-24-RGD induce la muerte celular programada por autofagia en las células que infecta. Sin embargo se desconocen los mecanismos moleculares que se ven alterados durante este proceso. Es por ello que los objetivos de la presente tesis doctoral son: caracterización de la señalización inducida tras la adhesión e internalización (5, 15 y 30 minutos posteriores a la infección (mpi)) del adenovirus Delta-24-RGD en células de glioblastoma humano U87; monitorizar el efecto del adenovirus Delta-24-RGD durante la replicación del ADN adenoviral (3-10hpi) en células de glioblastoma U87; y analizar el efecto del adenovirus Delta-24-RGD durante el proceso de autofagia (24-48hpi) en células de glioblastoma humano U87.
  • PublicationOpen Access
    Early-onset molecular derangements in the olfactory bulb of Tg2576 mice: novel insights into the stress-responsive olfactory kinase dynamics in Alzheimer’s disease
    (Frontiers Media, 2019) Lachén Montes, Mercedes; González Morales, Andrea; Palomino Alonso, Maialen; Ausín, Karina; Gómez-Ochoa, Marta; Zelaya Huerta, María Victoria; Ferrer, Isidro; Pérez Mediavilla, Alberto; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The olfactory bulb (OB) is the first processing station in the olfactory pathway. Despite smell impairment, which is considered an early event in Alzheimer’s disease (AD), little is known about the initial molecular disturbances that accompany the AD development at olfactory level. We have interrogated the time-dependent OB molecular landscape in Tg2576 AD mice prior to the appearance of neuropathological amyloid plaques (2-, and 6-month-old), using combinatorial omics analysis. The metabolic modulation induced by overproduction of human mutated amyloid precursor protein (APP) clearly differs between both time points. Besides the progressive perturbation of the APP interactome, functional network analysis unveiled an inverse regulation of downstream extracellular signal-regulated kinase (ERK1/2), and p38 mitogen-activated protein kinase (MAPK) routes in 2-month-old Tg2576 mice with respect to wild-type (WT) mice. In contrast, Akt and MAPK kinase 4 (SEK1)/ stress-activated protein kinase (SAPK) axis were parallel activated in the OB of 6-months-old-Tg2576 mice. Furthermore, a survival kinome profiling performed during the aging process (2-, 6-, and 18-month-old) revealed that olfactory APP overexpression leads to changes in the activation dynamics of protein kinase A (PKA), and SEK1/MKK4-SAPK/JNK between 6 and 18 months of age, when memory deficits appear and AD pathology is well established in transgenic mice. Interestingly, both olfactory pathways were differentially activated in a stage-dependent manner in human sporadic AD subjects with different neuropathological grading. Taken together, our data reflect the early impact of mutated APP on the OB molecular homeostasis, highlighting the progressive modulation of specific signaling pathways during the olfactory amyloidogenic pathology.
  • PublicationOpen Access
    Network-driven proteogenomics unveils an aging-related imbalance in the olfactory IκBα-NFκB p65 complex functionality in Tg2576 Alzheimer’s disease mouse model
    (MDPI, 2017) Palomino Alonso, Maialen; Lachén Montes, Mercedes; González Morales, Andrea; Ausín, Karina; Pérez Mediavilla, Alberto; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, PC023-24; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Olfaction is often deregulated in Alzheimer’s disease (AD) patients, and is also impaired in transgenic Tg2576 AD mice, which overexpress the Swedish mutated form of human amyloid precursor protein (APP). However, little is known about the molecular mechanisms that accompany the neurodegeneration of olfactory structures in aged Tg2576 mice. For that, we have applied proteome- and transcriptome-wide approaches to probe molecular disturbances in the olfactory bulb (OB) dissected from aged Tg2576 mice (18 months of age) as compared to those of age matched wild-type (WT) littermates. Some over-represented biological functions were directly relevant to neuronal homeostasis and processes of learning, cognition, and behavior. In addition to the modulation of CAMP responsive element binding protein 1 (CREB1) and APP interactomes, an imbalance in the functionality of the IκBα-NFκB p65 complex was observed during the aging process in the OB of Tg2576 mice. At two months of age, the phosphorylated isoforms of olfactory IκBα and NFκB p65 were inversely regulated in transgenic mice. However, both phosphorylated proteins were increased at 6 months of age, while a specific drop in IκBα levels was detected in 18-month-old Tg2576 mice, suggesting a transient activation of NFκB in the OB of Tg2576 mice. Taken together, our data provide a metabolic map of olfactory alterations in aged Tg2576 mice, reflecting the progressive effect of APP overproduction and β-amyloid (Aβ) accumulation on the OB homeostasis in aged stages.
  • PublicationOpen Access
    Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer's disease progression
    (Springer Nature, 2017) Lachén Montes, Mercedes; González Morales, Andrea; Zelaya Huerta, María Victoria; Pérez Valderrama, Estela; Ausín, Karina; Ferrer, Isidro; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, PC025; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Olfactory dysfunction is among the earliest features of Alzheimer’s disease (AD). Although neuropathological abnormalities have been detected in the olfactory bulb (OB), little is known about its dynamic biology. Here, OB- proteome analysis showed a stage-dependent synaptic proteostasis impairment during AD evolution. In addition to progressive modulation of tau and amyloid precursor protein (APP) interactomes, network-driven proteomics revealed an early disruption of upstream and downstream p38 MAPK pathway and a subsequent impairment of Phosphoinositide-dependent protein kinase 1 (PDK1)/Protein kinase C (PKC) signaling axis in the OB from AD subjects. Moreover, a mitochondrial imbalance was evidenced by a depletion of Prohibitin-2 (Phb2) levels and a specific decrease in the phosphorylated isoforms of Phb1 in intermediate and advanced AD stages. Interestingly, olfactory Phb subunits were also deregulated across different types of dementia. Phb2 showed a specific up-regulation in mixed dementia, while Phb1 isoforms were down-regulated in frontotemporal lobar degeneration (FTLD). However, no differences were observed in the olfactory expression of Phb subunits in progressive supranuclear palsy (PSP). To sum up, our data reflect, in part, the missing links in the biochemical understanding of olfactory dysfunction in AD, unveiling Phb complex as a differential driver of neurodegeneration at olfactory level.
  • PublicationOpen Access
    Spatial and temporal proteome dynamics of glioma cells during oncolytic adenovirus Delta-24-RGD infection
    (Impact Journals, 2018) González Morales, Andrea; Zabaleta, Aintzane; Guruceaga, Elizabeth; Alonso Roldán, Marta; García Moure, Marc; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant glioma. Oncolytic adenoviruses are being modified to exploit the aberrant expression of proteins in tumor cells to increase the antiglioma efficacy. E1A mutant adenovirus Delta-24-RGD (DNX-2401) has shown a favorable toxicity profile and remarkable efficacy in a first-in-human phase I clinical trial. However, the comprehensive modulation of glioma metabolism in response to Delta-24-RGD infection is poorly understood. Integrating mass spectrometry based-quantitative proteomics, physical and functional interaction data, and biochemical approaches, we conducted a cell-wide study of cytosolic, nuclear, and secreted glioma proteomes throughout the early time course of Delta-24-RGD infection. In addition to the severe proteostasis impairment detected during the first hours post-infection (hpi), Delta-24-RGD induces a transient inhibition of signal transducer and activator of transcription 3 (STAT3), and transcription factor AP-1 (c-JUN) between 3 and 10hpi, increasing the nuclear factor kappa B (NF-κB) activity at 6hpi. Furthermore, Delta-24-RGD specifically modulates the activation dynamics of protein kinase C (PKC), extracellular signal–regulated kinase 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) pathways early in infection. At extracellular level, Delta-24-RGD triggers a time –dependent dynamic production of multitasking cytokines, and chemotactic factors, suggesting potential pleiotropic effects on the immune system reactivation. Taken together, these data help us to understand the mechanisms used by Delta-24-RGD to exploit glioma proteome organization. Further mining of this proteomic resource may enable design and engineering complementary adenoviral based-vectors to increase the specificity and potency against glioma.