Marzo Pérez, Asier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Marzo Pérez
First Name
Asier
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
47 results
Search Results
Now showing 1 - 10 of 47
Publication Open Access Content adaptation and depth perception in an affordable multi-view display(MDPI, 2020) Ezcurdia Aguirre, Íñigo Fermín; Arregui Roldán, Adriana; Ardaiz Villanueva, Óscar; Ortiz, Amalia; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2019-000086; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1923We present SliceView, a simple and inexpensive multi-view display made with multiple parallel translucent sheets that sit on top of a regular monitor; each sheet reflects different 2D images that are perceived cumulatively. A technical study is performed on the reflected and transmitted light for sheets of different thicknesses. A user study compares SliceView with a commercial light-field display (LookingGlass) regarding the perception of information at multiple depths. More importantly, we present automatic adaptations of existing content to SliceView: 2D layered graphics such as retro-games or painting tools, movies and subtitles, and regular 3D scenes with multiple clipping z-planes. We show that it is possible to create an inexpensive multi-view display and automatically adapt content for it; moreover, the depth perception on some tasks is superior to the one obtained in a commercial light-field display. We hope that this work stimulates more research and applications with multi-view displays.Publication Open Access Using low-frequency sound to create non-contact sensations on and In the body(ACM, 2024-05-11) Hassan, Waseem; Marzo Pérez, Asier; Hornbæk, Kasper; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThis paper proposes a method for generating non-contact sensations using low-frequency sound waves without requiring user instrumentation. This method leverages the fundamental acoustic response of a confined space to produce predictable pressure spatial distributions at low frequencies, called modes. These modes can be used to produce sensations either throughout the body, in localized areas of the body, or within the body. We first validate the location and strength of the modes simulated by acoustic modeling. Next, a perceptual study is conducted to show how different frequencies produce qualitatively different sensations across and within the participants' bodies. The low-frequency sound offers a new way of delivering non-contact sensations throughout the body. The results indicate a high accuracy for predicting sensations at specific body locations.Publication Open Access Customized and high-performing acoustic levitators for contact-free experiments(Elsevier, 2024) Argyri, Smaragda-Maria; Andersson, Carl; Paillet, Nicolas; Evenäs, Lars; Ahrens, Jens; Marzo Pérez, Asier; Contreras, Víctor; Bordes, Romain; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAcoustic levitators are becoming increasingly common research instrumentation for contact-free, lab-in-a-droplet studies. Recently, levitators that employ multiple, small, ultrasonic transducers have gained popularity, given their low price, temperature and spatial stability, low voltage, and accessibility. Yet, the current state-of-the-art device, TinyLev, presents limitations for certain applications in terms of stability, strength, and compactness. Herein, we developed three new levitators and evaluated the effect of the construction parameters (e.g., distance of opposing arrays, number and arrangement of transducers, etc.) on their performance. The best performing levitator from this work had half the number of transducers, compared to TinyLev, though presented 1.7 and 3.5 times higher levitation capacity along the horizontal and vertical configurations, respectively, and 4.7 and 2.0 times higher horizontal and vertical stability of a levitated object, respectively. Additionally, we present a direct means to evaluate the acoustic radiation net force acting on a deformable object for uniaxial levitators, without the use of a microphone or a schlieren deflectometer for this type of levitators. The theoretical and experimental observations provide insights for adapting the acoustic levitator design for specific applications. Finally, we developed an open-source software which allows the evaluation of the acoustic pressure field generated by customized designs and provides the necessary files for 3D printing the scaffold of the levitator. This study aims to increase accessibility and promote further developments in contact-free experiments.Publication Open Access TipTrap: a co-located direct manipulation technique for acoustically levitated content(ACM, 2022) Jankauskis, Eimontas; Elizondo Martínez, Sonia; Montano Murillo, Roberto; Marzo Pérez, Asier; Martinez Plasencia, Diego; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAcoustic levitation has emerged as a promising approach for mid-air displays, by using multiple levitated particles as 3D voxels, cloth and thread props, or high-speed tracer particles, under the promise of creating 3D displays that users can see, hear and feel with their bare eyes, ears and hands. However, interaction with this mid-air content always occurred at a distance, since external objects in the display volume (e.g. user’s hands) can disturb the acoustic fields and make the particles fall. This paper proposes TipTrap, a co-located direct manipulation technique for acoustically levitated particles. TipTrap leverages the reflection of ultrasound on the users’ skin and employs a closed-loop system to create functional acoustic traps 2.1 mm below the fingertips, and addresses its 3 basic stages: selection, manipulation and deselection. We use Finite-Differences Time Domain (FDTD) simulations to explain the principles enabling TipTrap, and explore how finger reflections and user strategies influence the quality of the traps (e.g. approaching direction, orientation and tracking errors), and use these results to design our technique. We then implement the technique, characterizing its performance with a robotic hand setup and finish with an exploration of the ability of TipTrap to manipulate different types of levitated content.Publication Open Access Comparing a mid-air two-hand pinching point-and-click technique with mouse, keyboard and touchfree(Association for Computing Machinery, 2024-01-18) Lafuente Duque, Melchor; Elizondo Martínez, Sonia; Fernández Ortega, Unai Javier; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSome of our daily activities are performed by interacting with public touchscreens, such as food kiosks, bank tellers and newsstands. Nonetheless, the physical contact with these screens that are used by different people may be considered unhygienic. To avoid contact, some screens already integrate one-hand contactless interaction technologies, i.e. Leap Motion Controller, though they may lead to arm fatigue and slow performance. We present LeapPointer, a mid-Air two-hand pinching point-And-click technique. Specifically, this technique relies on a Leap Motion device to track both hands, and proposes a new software tool that allows bimanual selection through pointing and pinching gestures. A user study was performed to compare LeapPointer with two other techniques: The common mouse/keyboard and the current UltraLeap's TouchFree technique. Task completion time and accuracy as well as subjective data were gathered. The analysis of these data suggested that LeapPointer is significantly faster than the other touchless technique although less accurate. Self-reported fatigue was less with LeapPointer than with TouchFree.Publication Open Access Mental workload of guiding devices: directional pulling forces, vibrotactile stimuli and audio cues(ACM, 2024-06-19) Donkov Bogdanov, Stefan; Elizondo Martínez, Sonia; Ezcurdia Aguirre, Íñigo Fermín; Sarasate Azcona, Iosune; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAsymmetric vibrations are known to produce a pulling sensation when stimulating the human hand. This effect has been exploited as a means of guidance. We conducted a user study to compare asymmetric vibrations, simple vibration, and sound cues for guidance in terms of task completion time and mental workload. Mental workload was evaluated (N=22) using the dual-task paradigm with a Stroop test and arithmetic operations test as secondary tasks. Audio cues improved significantly the task completion time for baseline and stroop tasks compared to the other methods. No significant differences were found for the reaction time for the guiding task. The use of audio cues was evaluated as the less mentally demanding guiding method on the NASA-TLX questionnaire.Publication Open Access Exploring the addition of audio input to wearable punch recognition(Association for Computing Machinery (ACM), 2019) Quintero Ovalle, Juan; Stawarz, Katarzyna; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaMartial arts can promote healthy lifestyles, improve self-confidence and provide self-defence skills. Previous work has demonstrated that inertial sensors can be used to recognise movements such as punches in boxing and support self-directed training. However, many martial arts do not use gloves which means that punches can be performed with different parts of the hand, and therefore produce a different sound on impact. We investigate if it is possible to recognise different punches executed with a bare hand, and if the recognition rate improves by combining audio input with the traditional inertial sensors. We conducted a pilot study collecting a total of 600 punches, using a wearable wristband to capture inertial data and a stand-alone microphone for audio input. The results showed that it was possible to distinguish five types of punches with 94.4% accuracy when using only inertial data, and that adding audio input did not improve the accuracy. These findings can guide the design of future wearables for punch recognition.Publication Open Access PhantomFields: fast time and spatial multiplexation of acoustic fields for generation of superresolution patterns(2021) Elizondo Martínez, Sonia; Goñi Carnicero, Jaime; Galar Idoate, Mikel; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaUltrasonic fields generated by phased arrays can be tailored to obtain a custom pattern of acoustic radiation forces. These force fields can pattern particles as well as be felt by the human hand, enabling applications for bioprinting and contactless haptic devices. The forcé fields can be switched orders of magnitude faster than the reaction time of the particles that it pushes or the human mechanoreceptors of touch. Therefore, a quick multiplexation in time or in space of different acoustic fields will be perceived as the average field. In this paper, we optimise the non-linear problem of decomposing a target force field into several multiplexed acoustic fields. We create averaged fields, PhantomFields, that cannot be created by a regular (unique) emission of an acoustic field. We improve accuracy by time multiplexation and spatial multiplexation, i.e. quick rotation of the emitters. These processes improve the resolution and strength of the obtained fields without the requirement of new hardware, opening up applications in haptic devices and 3D printing.Publication Open Access Autonomous robot for construction stake out(2021) Zaratiegui Fernández, Javier ignacio; Dios Ursúa, Carlos Juan de; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako GobernuaDesign, develop and commercial deployment of an autonomous marking device for construction stake out.Publication Open Access Contactless pick-and-place of millimetric objects using inverted near-field acoustic levitation(American Institute of Physics, 2020) Brizzotti Andrade, Marco Aurélio; Ramos, Tiago S.; Adamowski, Julio C.; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaWe model and realize an ultrasonic contactless pick-and-place device capable of picking, self-centering, self-orienting, translating, and releasing flat millimetric objects. The device is an ultrasonic Langevin transducer operating at 21 kHz that radiates into air through a tapered tip. Objects are trapped few micrometers below the tip due to the near-field acoustic levitation phenomenon. We first investigate the conditions to achieve an attractive force on the object depending on its size and the device operating frequency. Second, we use a 3D acoustic model that describes the converging forces and torque that provide the self-centering and self-orienting capabilities. Third, a more advanced Computational Fluid Dynamics model based on the Navier-Stokes equations explains the small gap between the tip and the trapped object. The contactless manipulation capabilities of the device are demonstrated by picking, transporting, and releasing a Surface Mount Device in air. The presented manipulation concept can be an interesting alternative for manipulating delicate objects such as microelectromechanical devices, silicon dies, or micro-optical devices.