Chocarro de Erauso, Luisa

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Chocarro de Erauso

First Name

Luisa

person.page.departamento

Ciencias de la Salud

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    PD-L1 in systemic immunity: unraveling its contribution to PD-1/PD-L1 blockade immunotherapy
    (MDPI, 2020) Bocanegra Gondán, Ana Isabel; Blanco, Ester; Fernández Hinojal, Gonzalo; Chocarro de Erauso, Luisa; Zuazo Ibarra, Miren; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    The use of monoclonal antibodies targeting PD-1/PD-L1 axis completely changed anticancer treatment strategies. However, despite the significant improvement in overall survival and progression-free survival of patients undergoing these immunotherapy treatments, the only clinically accepted biomarker with some prediction capabilities for the outcome of the treatment is PD-L1 expression in tumor biopsies. Nevertheless, even when having PD-L1-positive tumors, numerous patients do not respond to these treatments. Considering the high cost of these therapies and the risk of immune-related adverse events during therapy, it is necessary to identify additional biomarkers that would facilitate stratifying patients in potential responders and non-responders before the start of immunotherapies. Here, we review the utility of PD-L1 expression not only in tumor cells but in immune system cells and their influence on the antitumor activity of immune cell subsets.
  • PublicationOpen Access
    Immune profiling uncovers memory T-cell responses with a Th17 signature in cancer patients with previous SARS-CoV-2 infection followed by mRNA vaccination
    (MDPI, 2022) Echaide Górriz, Míriam; Labiano, Ibone; Delgado, Marina; Fernández de Lascoiti, Ángela; Ochoa, Patricia; Garnica, Maider; Ramos, Pablo; Chocarro de Erauso, Luisa; Fernández Rubio, Leticia; Arasanz Esteban, Hugo; Bocanegra Gondán, Ana Isabel; Blanco, Ester; Piñeiro Hermida, Sergio; Morente Sancho, Pilar; Vera García, Ruth; Alsina, María; Escors Murugarren, David; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    It is unclear whether patients with cancer present inherently impaired responses to COVID-19 and vaccination due to their treatments, neoplastic diseases or both. To address this question, immune profiling was performed in three cohorts of healthy donors and oncologic patients: infected with SARS-CoV-2, BNT162b2-vaccinated, and with previous COVID-19 disease and subsequently vaccinated. Cancer patients showed good antibody responses to vaccination, but poor induction of T-cell responses towards the S protein when compared to infection. Following natural infection, the major targets for T-cells were the SARS-CoV-2 structural proteins M and S, but not the N protein. Similar to antibody titers, the T-cell responses quickly decayed after six months post-vaccination. Significant memory T-cell expansion was observed in vaccinated donors only if previously diagnosed with COVID-19 before undergoing vaccination. Oncologic patients with previous COVID-19 followed by vaccination exhibited potent IL-17+ CD4 and CD8 T-cell responses and elevated numbers of circulating neutrophils in peripheral blood. © 2022 by the authors.
  • PublicationOpen Access
    Systemic blood immune cell populations as biomarkers for the outcome of immune checkpoint inhibitor therapies
    (MDPI, 2020) Hernández, Carlos; Arasanz Esteban, Hugo; Chocarro de Erauso, Luisa; Bocanegra Gondán, Ana Isabel; Zuazo Ibarra, Miren; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    The development of cancer immunotherapy in the last decade has followed a vertiginous rhythm. Nowadays, immune checkpoint inhibitors (ICI) which include anti-CTLA4, anti-PD-1 and anti-PD-L1 antibodies are in clinical use for the treatment of numerous cancers. However, approximately only a third of the patients benefit from ICI therapies. Many efforts have been made for the identification of biomarkers allowing patient stratification into potential responders and progressors before the start of ICI therapies or for monitoring responses during treatment. While much attention is centered on biomarkers from the tumor microenvironment, in many cases biopsies are not available. The identification of systemic immune cell subsets that correlate with responses could provide promising biomarkers. Some of them have been reported to influence the response to ICI therapies, such as proliferation and activation status of CD8 and CD4 T cells, the expression of immune checkpoints in peripheral blood cells and the relative numbers of immunosuppressive cells such as regulatory T cells and myeloid-derived suppressor cells. In addition, the profile of soluble factors in plasma samples could be associated to response or tumor progression. Here we will review the cellular subsets associated to response or progression in different studies and discuss their accuracy in diagnosis.
  • PublicationOpen Access
    Cutting-edge: preclinical and clinical development of the first approved LAG-3 inhibitor
    (MDPI, 2022) Chocarro de Erauso, Luisa; Bocanegra Gondán, Ana Isabel; Blanco, Ester; Fernández Rubio, Leticia; Arasanz Esteban, Hugo; Echaide Górriz, Míriam; Garnica, Maider; Ramos, Pablo; Piñeiro Hermida, Sergio; Vera García, Ruth; Escors Murugarren, David; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Immune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs. Recently, a new dual anti-PD-1 (Nivolumab) and anti-LAG-3 (Relatimab) treatment developed by Bristol Myers Squibb (Opdualag), was approved by the Food and Drug Administration (FDA) as the first LAG-3 blocking antibody combination for unresectable or metastatic melanoma. This novel immunotherapy combination more than doubled median progression-free survival (PFS) when compared to nivolumab monotherapy (10.1 months versus 4.6 months). Here, we analyze the large clinical trial responsible for this historical approval (RELATIVITY-047), and discuss the preclinical and clinical developments that led to its jump into clinical practice. We will also summarize results achieved by other LAG-3 targeting molecules with promising anti-tumor activities currently under clinical development in phases I, I/II, II, and III. Opdualag will boost the entry of more LAG-3 targeting molecules into clinical practice, supporting the accumulating evidence highlighting the pivotal role of LAG-3 in cancer.
  • PublicationOpen Access
    Understanding LAG-3 Signaling
    (MDPI, 2021) Chocarro de Erauso, Luisa; Blanco, Ester; Zuazo Ibarra, Miren; Arasanz Esteban, Hugo; Bocanegra Gondán, Ana Isabel; Fernández Rubio, Leticia; Morente Sancho, Pilar; Fernández Hinojal, Gonzalo; Echaide Górriz, Míriam; Garnica, Maider; Ramos, Pablo; Vera García, Ruth; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Lymphocyte activation gene 3 (LAG-3) is a cell surface inhibitory receptor with multiple biological activities over T cell activation and effector functions. LAG-3 plays a regulatory role in immunity and emerged some time ago as an inhibitory immune checkpoint molecule comparable to PD-1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. LAG-3 is the third inhibitory receptor to be exploited in human anti-cancer immunotherapies, and it is considered a potential next-generation cancer immunotherapy target in human therapy, right next to PD-1 and CTLA-4. Unlike PD-1 and CTLA-4, the exact mechanisms of action of LAG-3 and its relationship with other immune checkpoint molecules remain poorly understood. This is partly caused by the presence of non-conventional signaling motifs in its intracellular domain that are different from other conventional immunoregulatory signaling motifs but with similar inhibitory activities. Here we summarize the current understanding of LAG-3 signaling and its role in LAG-3 functions, from its mechanisms of action to clinical applications.
  • PublicationEmbargo
    Study of PD-1/LAG-3 signaling in T cells and development of therapeutic strategies to counteract PD-1/LAG-3 mediated resistance to cancer immunotherapy
    (2025) Chocarro de Erauso, Luisa; Escors Murugarren, David; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak
    A significant number of cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. However, how LAG-3 mechanistically triggers its downstream inhibitory signalling remains largely unknown. Likewise, how LAG-3 cooperates with PD-1 to stablish a highly dysfunctional state in T cells in cancer is also unknown. A better understanding of LAG-3 and PD-1/LAG-3 signaling will uncover the reasons behind intrinsic resistance to PD-1 blockade, develop novel treatments and improve current therapies. This PhD thesis comprises the study of PD-1/LAG-3 signaling in T-cells and the development of therapeutic strategies to counteract PD-1/LAG-3-mediated resistance to cancer immunotherapy. The results of this thesis have been organized into three chapters. In chapter 1, PD-1/LAG-3 molecular co-signaling mechanisms were identified in T-cells, uncovering CBLB ubiquitin ligases as potential targets. The combination of CBL-B inhibitors with anti-PD- 1/anti-LAG-3 immunotherapies overcame PD-1/LAG-3-mediated resistance in models of lung cancer refractory to immunotherapies. In chapter 2, the consequences of PD-1/LAG-3 cosignaling over the proteome and phosphoproteome associated to the TCR signalosome were characterized. MYC was identified as an inhibited upstream regulator of PD-1/LAG-3 proteomes and phosphoproteomes in T-cells. In chapter 3, T-cell lines expressing LAG-3 mutants in its signaling domains were engineered and analyzed by quantitative highthroughput differential proteomics and phosphoproteomics. The pathways and molecules regulated by each of LAG-3 domains and their effect on the TCR signalosome both in terms of protein expression and phosphorylation activity were characterized. These results highlighted the critical role of KIEELE and EP domains to endow LAG-3 with inhibitory functions. Overall, the results will help to identify the mechanisms of intrinsic resistance to PD-1 blockade mediated by LAG-3 co-signaling, and uncover novel therapeutic targets to counteract PD- 1/LAG-3-mediated resistance.
  • PublicationOpen Access
    Systemic CD4 immunity and PD-L1/PD-1 blockade immunotherapy
    (MDPI, 2022) Escors Murugarren, David; Bocanegra Gondán, Ana Isabel; Chocarro de Erauso, Luisa; Blanco, Ester; Piñeiro Hermida, Sergio; Garnica, Maider; Fernández Rubio, Leticia; Vera García, Ruth; Arasanz Esteban, Hugo; Kochan, Grazyna; Ciencias de la Salud; Osasun Zientziak
    PD-L1/PD-1 blockade immunotherapy has changed the therapeutic approaches for the treatment of many cancers. Nevertheless, the mechanisms underlying its efficacy or treatment failure are still unclear. Proficient systemic immunity seems to be a prerequisite for efficacy, as recently shown in patients and in mouse models. It is widely accepted that expansion of anti-tumor CD8 T cell populations is principally responsible for anti-tumor responses. In contrast, the role of CD4 T cells has been less studied. Here we review and discuss the evidence supporting the contribution of CD4 T cells to anti-tumor immunity, especially recent advances linking CD4 T cell subsets to efficacious PD-L1/PD-1 blockade immunotherapy. We also discuss the role of CD4 T cell memory subsets present in peripheral blood before the start of immunotherapies, and their utility as predictors of response.
  • PublicationOpen Access
    Cutting-edge CAR engineering: beyond T cells
    (MDPI, 2022) Chocarro de Erauso, Luisa; Blanco, Ester; Fernández Rubio, Leticia; Arasanz Esteban, Hugo; Bocanegra Gondán, Ana Isabel; Echaide Górriz, Míriam; Garnica, Maider; Ramos, Pablo; Piñeiro Hermida, Sergio; Vera García, Ruth; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak
    Chimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate. These cells interact with other immune cells, mediating immunosuppression and promoting angiogenesis. Recently, the development of CAR-M cell therapies has been put forward as a new candidate immunotherapy with good efficacy potential. This alternative CAR strategy may increase the efficacy, survival, persistence, and safety of CAR treatments in solid tumours. This remains a critical frontier in cancer research and opens up a new possibility for next-generation personalised medicine to overcome TME resistance. However, the exact mechanisms of action of CAR-M and their effect on the TME remain poorly understood. Here, we summarise the basic, translational, and clinical results of CAR-innate immune cells and CAR-M cell immunotherapies, from their engineering and mechanistic studies to preclinical and clinical development.
  • PublicationOpen Access
    Metabolic dyshomeostasis induced by SARS-CoV-2 structural proteins reveals immunological insights into viral olfactory interactions
    (Frontiers Media, 2022) Lachén Montes, Mercedes; Mendizuri, Naroa; Ausín, Karina; Echaide Górriz, Míriam; Blanco, Ester; Chocarro de Erauso, Luisa; Toro, María de; Escors Murugarren, David; Fernández Irigoyen, Joaquín; Kochan, Grazyna; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    One of the most common symptoms in COVID-19 is a sudden loss of smell. SARS-CoV-2 has been detected in the olfactory bulb (OB) from animal models and sporadically in COVID-19 patients. To decipher the specific role over the SARS-CoV-2 proteome at olfactory level, we characterized the in-depth molecular imbalance induced by the expression of GFP-tagged SARS-CoV-2 structural proteins (M, N, E, S) on mouse OB cells. Transcriptomic and proteomic trajectories uncovered a widespread metabolic remodeling commonly converging in extracellular matrix organization, lipid metabolism and signaling by receptor tyrosine kinases. The molecular singularities and specific interactome expression modules were also characterized for each viral structural factor. The intracellular molecular imbalance induced by each SARS-CoV-2 structural protein was accompanied by differential activation dynamics in survival and immunological routes in parallel with a differentiated secretion profile of chemokines in OB cells. Machine learning through a proteotranscriptomic data integration uncovered TGF-beta signaling as a confluent activation node by the SARS-CoV-2 structural proteome. Taken together, these data provide important avenues for understanding the multifunctional immunomodulatory properties of SARS-CoV-2 M, N, S and E proteins beyond their intrinsic role in virion formation, deciphering mechanistic clues to the olfactory inflammation observed in COVID-19 patients.
  • PublicationOpen Access
    Mrna vaccines against sars-cov-2: advantages and caveats
    (MDPI, 2023) Echaide Górriz, Míriam; Chocarro de Erauso, Luisa; Bocanegra Gondán, Ana Isabel; Blanco, Ester; Kochan, Grazyna; Escors Murugarren, David; Ciencias de la Salud; Osasun Zientziak
    The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection of new variants have led to a progressive decay in vaccine efficacy. Pfizer–BioNTech and Moderna developed updated bivalent vaccines—Comirnaty and Spikevax—to improve responses against the SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines, the emergence of some rare but serious adverse events and the activation of T-helper 17 responses suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines. In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2 focusing on the most recent, related publications.