On the measurement of stability parameter over complex mountainous terrain

Date

2022

Authors

Cantero Nouqueret, Elena
Sanz, Javier
Borbón, Fernando
Paredes, Daniel

Director

Publisher

Copernicus Publications
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Impacto

Abstract

Atmospheric stability has a significant effect on wind shear and turbulence intensity, and these variables, in turn, have a direct impact on wind power production and loads on wind turbines. It is therefore important to know how to characterise atmospheric stability in order to make better energy yield estimation in a wind farm. Based on the research-grade meteorological mast at Alaiz (CENER's test site in Navarre, Spain) named MP5, this work compares and evaluates different instrument set-ups and methodologies for stability characterisation, namely the Obukhov parameter, measured with a sonic anemometer, and the bulk Richardson number based on two temperature and one wind speed measurement. The methods are examined considering their theoretical background, implementation complexity, instrumentation requirements, and practical use in connection to wind energy applications. The sonic method provides a more precise local measurement of stability while the bulk Richardson is a simpler, robust and cost-effective technique to implement in wind assessment campaigns. Using the sonic method as a benchmark, it is shown that to obtain reliable bulk Richardson measurements in onshore sites it is necessary to install one of the temperature sensors close to the ground where the temperature gradient is stronger.

Description

Keywords

Atmospheric stability, Complex mountainous terrain, Wind power, Sonic method, Bulk Richardson number

Department

Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2022 Elena Cantero et al. Creative Commons Attribution 4.0 International

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.