On the limits of effectiveness in estimation of distribution algorithms

Date

2011

Authors

Zhang, Qingfu
Mendiburu, Alexander
Santana, Roberto
Lozano, José Antonio

Director

Publisher

IEEE
Acceso cerrado / Sarbide itxia
Contribución a congreso / Biltzarrerako ekarpena

Project identifier

Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

Which problems a search algorithm can effectively solve is a fundamental issue that plays a key role in understanding and developing algorithms. In order to study the ability limit of estimation of distribution algorithms (EDAs), this paper experimentally tests three different EDA implementations on a sequence of additively decomposable functions (ADFs) with an increasing number of interactions among binary variables. The results show that the ability of EDAs to solve problems could be lost immediately when the degree of variable interaction is larger than a threshold. We argue that this phase-transition phenomenon is closely related with the computational restrictions imposed in the learning step of this type of algorithms. Moreover, we demonstrate how the use of unrestricted Bayesian networks rapidly becomes inefficient as the number of sub-functions in an ADF increases. The study conducted in this paper is useful in order to identify patterns of behavior in EDAs and, thus, improve their performances.

Description

Acceso cerrado a este documento. No se encuentra disponible para la consulta pública. Depositado en Academica-e para cumplir con los requisitos de evaluación y acreditación académica del autor/a (sexenios, acreditaciones, etc.).

Keywords

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Echegoyen, C., Zhang, Q., Mendiburu, A., Santana, R., Lozano, J. A. (2011) On the limits of effectiveness in estimation of distribution algorithms. In Smith, A. E., Parmee I. (Eds.), EEE Congress on Evolutionary Computation, CEC 2011 (pp. 1573-1580). IEEE. https://doi.org/10.1109/CEC.2011.5949803.

item.page.rights

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.