A survey on detection techniques for cryptographic ransomware

dc.contributor.authorBerrueta Irigoyen, Eduardo
dc.contributor.authorMorató Osés, Daniel
dc.contributor.authorMagaña Lizarrondo, Eduardo
dc.contributor.authorIzal Azcárate, Mikel
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.date.accessioned2020-05-12T11:15:21Z
dc.date.available2020-05-12T11:15:21Z
dc.date.issued2019
dc.description.abstractCrypto-ransomware is a type of malware that encrypts user files, deletes the original data, and asks for a ransom to recover the hijacked documents. It is a cyber threat that targets both companies and residential users, and has spread in recent years because of its lucrative results. Several articles have presented classifications of ransomware families and their typical behaviour. These insights have stimulated the creation of detection techniques for antivirus and firewall software. However, because the ransomware scene evolves quickly and aggressively, these studies quickly become outdated. In this study, we surveyed the detection techniques that the research community has developed in recent years. We compared the different approaches and classified the algorithms based on the input data they obtain from ransomware actions, and the decision procedures they use to reach a classification decision between benign or malign applications. This is a detailed survey that focuses on detection algorithms, compared to most previous studies that offer a survey of ransomware families or isolated proposals of detection algorithms. We also compared the results of these proposals.en
dc.description.sponsorshipThis work was supported by the Spanish MINECO through project PIT (TEC2015-69417-C2-2-R).en
dc.format.extent20 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1109/ACCESS.2019.2945839
dc.identifier.issn2169-3536
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/36854
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartofIEEE Access, 2019, 7, 144925-144944en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2015-69417-C2-2-R/ES/
dc.relation.publisherversionhttps://doi.org/10.1109/ACCESS.2019.2945839
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputer securityen
dc.subjectMalware detectionen
dc.subjectRansomwareen
dc.titleA survey on detection techniques for cryptographic ransomwareen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication66d6a070-df96-4f8b-ba63-cb0a93f576ce
relation.isAuthorOfPublicationcd454059-725e-480a-b896-894e79f307a5
relation.isAuthorOfPublicationc521bf55-a1e7-47b2-ac98-5fbf8c286f7a
relation.isAuthorOfPublicationf829a159-0938-45d1-a352-d28fb297ed0b
relation.isAuthorOfPublication.latestForDiscovery66d6a070-df96-4f8b-ba63-cb0a93f576ce

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020020143_Berrueta_SurveyDetection.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: