Unpaired spatio-temporal fusion of image patches (USTFIP) from cloud covered images
dc.contributor.author | Goyena Baroja, Harkaitz | |
dc.contributor.author | Pérez Goya, Unai | |
dc.contributor.author | Montesino San Martín, Manuel | |
dc.contributor.author | Militino, Ana F. | |
dc.contributor.author | Wang, Qunming | |
dc.contributor.author | Atkinson, Peter M. | |
dc.contributor.author | Ugarte Martínez, María Dolores | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.contributor.department | Institute for Advanced Materials and Mathematics - INAMAT2 | en |
dc.date.accessioned | 2024-01-31T08:46:38Z | |
dc.date.available | 2024-01-31T08:46:38Z | |
dc.date.issued | 2023 | |
dc.date.updated | 2024-01-31T08:28:31Z | |
dc.description.abstract | Spatio-temporal image fusion aims to increase the frequency and resolution of multispectral satellite sensor images in a cost-effective manner. However, practical constraints on input data requirements and computational cost prevent a wider adoption of these methods in real case-studies. We propose an ensemble of strategies to eliminate the need for cloud-free matching pairs of satellite sensor images. The new methodology called Unpaired Spatio-Temporal Fusion of Image Patches (USTFIP) is tested in situations where classical requirements are progressively difficult to meet. Overall, the study shows that USTFIP reduces the root mean square error by 2-to-13% relative to the state-of-the-art Fit-FC fusion method, due to an efficient use of the available information. Implementation of USTFIP through parallel computing saves up to 40% of the computational time required for Fit-FC. | en |
dc.description.sponsorship | This research was supported by the Spanish Research Agency and Next Generation EU (PDC2021-120796-I00 project) and by the Spanish Research Agency (PID 2020-113125RB-I00/MCIN/AEI/10.13039/ 501100011033 project). This work was supported by the National Natural Science Foundation of China under Grant 42222108. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Goyena, H., Pérez-Goya, U., Montesino-SanMartin, M., Militino, A. F., Wang, Q., Atkinson, P. M., & Ugarte, M. D. (2023). Unpaired spatio-temporal fusion of image patches (Ustfip) from cloud covered images. Remote Sensing of Environment, 295, 113709. https://doi.org/10.1016/j.rse.2023.113709 | en |
dc.identifier.doi | 10.1016/j.rse.2023.113709 | |
dc.identifier.issn | 0034-4257 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/47264 | |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.relation.ispartof | Remote Sensing of Environment 295 (2023) 113709 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113125RB-I00/ES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-120796-I00/ES/ | |
dc.relation.publisherversion | https://doi.org/10.1016/j.rse.2023.113709 | |
dc.rights | © 2023 The Author(s). This is an open access article under the CC BY-NC-ND license. | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Clouds | en |
dc.subject | Fit-FC | en |
dc.subject | Parallel computing | en |
dc.subject | Satellite imagery | en |
dc.subject | Spatio-temporal image fusion | en |
dc.title | Unpaired spatio-temporal fusion of image patches (USTFIP) from cloud covered images | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 003960f8-aa6d-47ec-bec1-6bc59c3c8edb | |
relation.isAuthorOfPublication | 5a889cfb-af34-4085-aed8-c77bb154cac1 | |
relation.isAuthorOfPublication | d3c066e9-6b6f-40b0-ac34-4bb96a71bb82 | |
relation.isAuthorOfPublication | e87ff19e-9d36-4286-989b-cafd391dff9d | |
relation.isAuthorOfPublication.latestForDiscovery | 003960f8-aa6d-47ec-bec1-6bc59c3c8edb |