Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks

dc.contributor.authorFerrero Jaurrieta, Mikel
dc.contributor.authorPaiva, Rui
dc.contributor.authorCruz, Anderson
dc.contributor.authorBedregal, Benjamin
dc.contributor.authorMiguel Turullols, Laura de
dc.contributor.authorTakáč, Zdenko
dc.contributor.authorLópez Molina, Carlos
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2024-05-07T09:11:27Z
dc.date.issued2024-07-01
dc.date.updated2024-05-07T08:57:26Z
dc.description.abstractConvolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.en
dc.description.sponsorshipThe authors acknowledge with thanks to their universities. Furthermore, this work was supported by the Brazilian funding agency CNPq (Brazilian Research Council) under Projects 311429/2020-3 and 200282/2022-0, by the project PID2022-136627NB-I00 founded by MCIN/AEI/10.13039/501100011033/FEDER, UE, of the Spanish Government, Project VEGA 1/0193/22 and by Tracasa Instrumental and the Immigration Policy and Justice Department of the Government of Navarre.en
dc.embargo.inicio2024-05-07
dc.embargo.lift2026-07-01
dc.embargo.terms2026-07-01
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFerrero-Jaurrieta, M., Paiva, R., Cruz, A., Bedregal, B., De Miguel, L., Takac, Z., Lopez-Molina, C., Bustince, H. (2024) Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks. Engineering Applications of Artificial Intelligence, 133(E), 108470-108470. https://doi.org/10.1016/j.engappai.2024.108470.es_ES
dc.identifier.doi10.1016/j.engappai.2024.108470
dc.identifier.issn0952-1976
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/48073
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofEngineering Applications of Artificial Intelligence (2024), vol. 133(E), 108470es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//1%2F0193%2F22/
dc.relation.publisherversionhttps://doi.org/10.1016/j.engappai.2024.108470
dc.rights© 2024 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPseudo-grouping functionen
dc.subjectOver-time poolingen
dc.subjectText classificationen
dc.subjectFeature fusionen
dc.subjectAggregation functionen
dc.titleNon-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networksen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3e9cb4ee-2d64-47ff-9f40-d7519dc6cb0d
relation.isAuthorOfPublicatione3f0cca3-0e2f-46b7-b476-5cda361e0efe
relation.isAuthorOfPublicationb6673ff1-b94d-4852-be93-90b30a9c8555
relation.isAuthorOfPublicationb1df82f9-2ce4-488f-afe0-98e7f27ece58
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery3e9cb4ee-2d64-47ff-9f40-d7519dc6cb0d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ferrero_NonsymmetricOvertime.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: