A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis
dc.contributor.author | Rueda, Cristina | |
dc.contributor.author | Rodríguez Collado, Alejandro | |
dc.contributor.author | Fernández, Itziar | |
dc.contributor.author | Canedo, Christian | |
dc.contributor.author | Ugarte Martínez, María Dolores | |
dc.contributor.author | Larriba, Yolanda | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.contributor.department | Institute for Advanced Materials and Mathematics - INAMAT2 | en |
dc.date.accessioned | 2023-04-04T10:44:23Z | |
dc.date.available | 2023-04-04T10:44:23Z | |
dc.date.issued | 2022 | |
dc.date.updated | 2023-04-04T10:37:18Z | |
dc.description.abstract | Mathematical models of cardiac electrical activity are one of the most important tools for elucidating information about heart diagnostics. In this paper, we present an efficient mathematical formulation for this modeling simple enough to be easily parameterized and rich enough to provide realistic signals. It relies on a five dipole representation of the cardiac electric source, each one associated with the well-known waves of the electrocardiogram signal. Beyond the physical basis of the model, the parameters are physiologically interpretable as they characterize the wave shape, similar to what a physician would look for in signals, thus making them very useful in diagnosis. The model accurately reproduces the electrocardiogram signals of any diseased or healthy heart. This new discovery represents a significant advance in electrocardiography research. It is especially useful for diagnosis, patient follow-up or decision-making on new therapies; is also a promising tool for well-performing, transparent and interpretable AI approaches. | en |
dc.description.sponsorship | The authors gratefully acknowledge the financial support received by the Spanish Ministry of Science, Innovation and Universities PID2019-106363RB-I00 to C.R., I.F. and Y.L. and by the Eugenio Rodríguez Pascual Foundation Biomedical Research Grants 2021 to I.F., Y.L., A.R-C., C.C. and C.R. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Rueda, C., Rodríguez-Collado, A., Fernández, I., Canedo, C., Ugarte, M. D., & Larriba, Y. (2022). A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis. IScience, 25(12), 105617. https://doi.org/10.1016/j.isci.2022.105617 | en |
dc.identifier.doi | 10.1016/j.isci.2022.105617 | |
dc.identifier.issn | 2589-0042 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/45055 | |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.relation.ispartof | iScience, 2022, 25(12), 1-17 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106363RB-I00/ES/ | |
dc.relation.publisherversion | https://doi.org/10.1016/j.isci.2022.105617 | |
dc.rights | © 2022 The Author(s). This is an open access article under the CC BY-NC-ND license. | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Artificial intelligence | en |
dc.subject | Cardiovascular medicine | en |
dc.subject | Computer-aided diagnosis method | en |
dc.title | A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e87ff19e-9d36-4286-989b-cafd391dff9d | |
relation.isAuthorOfPublication.latestForDiscovery | e87ff19e-9d36-4286-989b-cafd391dff9d |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.78 KB
- Format:
- Item-specific license agreed to upon submission
- Description: