A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis

dc.contributor.authorRueda, Cristina
dc.contributor.authorRodríguez Collado, Alejandro
dc.contributor.authorFernández, Itziar
dc.contributor.authorCanedo, Christian
dc.contributor.authorUgarte Martínez, María Dolores
dc.contributor.authorLarriba, Yolanda
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.date.accessioned2023-04-04T10:44:23Z
dc.date.available2023-04-04T10:44:23Z
dc.date.issued2022
dc.date.updated2023-04-04T10:37:18Z
dc.description.abstractMathematical models of cardiac electrical activity are one of the most important tools for elucidating information about heart diagnostics. In this paper, we present an efficient mathematical formulation for this modeling simple enough to be easily parameterized and rich enough to provide realistic signals. It relies on a five dipole representation of the cardiac electric source, each one associated with the well-known waves of the electrocardiogram signal. Beyond the physical basis of the model, the parameters are physiologically interpretable as they characterize the wave shape, similar to what a physician would look for in signals, thus making them very useful in diagnosis. The model accurately reproduces the electrocardiogram signals of any diseased or healthy heart. This new discovery represents a significant advance in electrocardiography research. It is especially useful for diagnosis, patient follow-up or decision-making on new therapies; is also a promising tool for well-performing, transparent and interpretable AI approaches.en
dc.description.sponsorshipThe authors gratefully acknowledge the financial support received by the Spanish Ministry of Science, Innovation and Universities PID2019-106363RB-I00 to C.R., I.F. and Y.L. and by the Eugenio Rodríguez Pascual Foundation Biomedical Research Grants 2021 to I.F., Y.L., A.R-C., C.C. and C.R.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRueda, C., Rodríguez-Collado, A., Fernández, I., Canedo, C., Ugarte, M. D., & Larriba, Y. (2022). A unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosis. IScience, 25(12), 105617. https://doi.org/10.1016/j.isci.2022.105617en
dc.identifier.doi10.1016/j.isci.2022.105617
dc.identifier.issn2589-0042
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/45055
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofiScience, 2022, 25(12), 1-17en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106363RB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.isci.2022.105617
dc.rights© 2022 The Author(s). This is an open access article under the CC BY-NC-ND license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectArtificial intelligenceen
dc.subjectCardiovascular medicineen
dc.subjectComputer-aided diagnosis methoden
dc.titleA unique cardiac electrocardiographic 3D model. Toward interpretable AI diagnosisen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione87ff19e-9d36-4286-989b-cafd391dff9d
relation.isAuthorOfPublication.latestForDiscoverye87ff19e-9d36-4286-989b-cafd391dff9d

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Rueda_UniqueCardiac.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Rueda_UniqueCardiac_MatCompl.pdf
Size:
13.78 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: