Fuzzy clustering to encode contextual information in artistic image classification

dc.contributor.authorFumanal Idocin, Javier
dc.contributor.authorTakáč, Zdenko
dc.contributor.authorHoranská, Lubomíra
dc.contributor.authorBustince Sola, Humberto
dc.contributor.authorCordón, Óscar
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2023-09-26T10:31:27Z
dc.date.available2023-09-26T10:31:27Z
dc.date.issued2022
dc.date.updated2023-09-26T06:40:04Z
dc.description.abstractAutomatic art analysis comprises of utilizing diverse processing methods to classify and categorize works of art. When working with this kind of pictures, we have to take under consideration different considerations compared to classical picture handling, since works of art alter definitely depending on the creator, the scene delineated or their aesthetic fashion. This extra data improves the visual signals gotten from the images and can lead to better performance. However, this information needs to be modeled and embed alongside the visual features of the image. This is often performed utilizing deep learning models, but they are expensive to train. In this paper we utilize the Fuzzy C-Means algorithm to create a embedding strategy based on fuzzy memberships to extract relevant information from the clusters present in the contextual information. We extend an existing state-of-the-art art classification system utilizing this strategy to get a new version that presents similar results without training additional deep learning models.en
dc.description.sponsorshipJavier Fumanal Idocin and Humberto Bustince’s research has been supported by the project PID2019-108392GB I00 (AEI/10.13039/501100011033). Zdenko Takác and Lúbomíra Horanská’s research has been supported by the grant VEGA 1/0267/21.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFumanal-Idocin, J., Takáč, Z., Horanská, L., Bustince, H., & Cordon, O. (2022). Fuzzy clustering to encode contextual information in artistic image classification. En D. Ciucci, I. Couso, J. Medina, D. Ślęzak, D. Petturiti, B. Bouchon-Meunier, & R. R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems (Vol. 1602, pp. 355-366). Springer International Publishing. https://doi.org/10.1007/978-3-031-08974-9_28en
dc.identifier.doi10.1007/978-3-031-08974-9_28
dc.identifier.isbn978-3-031-08973-2
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46402
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofCiucci, D.; Couso, I.; Medina, J.; Slezak, D.; Petturiti, D.; Bouchon-Meunier, B.; Jager, R. R. (Eds.). Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2022. Cham: Springer International Publishing; 2022. p.355-366 978-3-031-08973-2en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-031-08974-9_28
dc.rights© 2022 Springer Nature Switzerland AGen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectClusteringen
dc.subjectFuzzy C Meansen
dc.subjectImage classificationen
dc.subjectRepresentation learningen
dc.subjectClusteringen
dc.titleFuzzy clustering to encode contextual information in artistic image classificationen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication5193d488-fd4e-4556-88ca-ba5116412a36
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery5193d488-fd4e-4556-88ca-ba5116412a36

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fumanal_FuzzyClustering.pdf
Size:
560.94 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: