Enhanced thermal performance of photovoltaic panels based on glass surface texturization

dc.contributor.authorAndueza Unanua, Ángel María
dc.contributor.authorPinto Fuste, Cristina Leyre
dc.contributor.authorNavajas Hernández, David
dc.contributor.authorSevilla Moróder, Joaquín
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernuaes_ES
dc.date.accessioned2021-12-30T06:39:46Z
dc.date.available2021-12-30T06:39:46Z
dc.date.issued2021
dc.description.abstractPhotovoltaic module temperature is a detrimental parameter influencing the energy yield and the durability of photovoltaic systems. Among the passive strategies to reduce the operating temperature of solar cells, radiative cooling is receiving a lot of attention, as an effective mean to passively evacuate heat in systems. The existence of a wavelength window of atmospheric transparency (8–13 μm) allows sending heat to outer space. The functionalization of the glass that could help to limit or reduce the temperature of the solar cells is an interesting approach. In this paper, we explore the effect of glass surface patterns in its radiation performance, so that the radiation cooling effect could be enhanced. The study is based on numerical simulations, calculating the spectral emissivity of different geometrical configurations of structures on top of the glass. Different geometrical figures of micrometers in size have been tested to find an optimal emissivity response in the transparent atmospheric window. Periodical patterns based on cones, pyramids, or moth-eye shapes result in emissivity responses close to one along thermal wavelengths (8–25 μm) which increases the emitted power of the glass. However, when assessing the cooling power under sunlight, the evaluation wavelength band has to be expanded (0.3–25 μm). Here, we found that not all geometrical figures are effective for radiative cooling. Surfaces textured by holes and pyramids show a substantial cooling effect, providing an increase in cooling power over the flat glass ranging from 40 W/m2 to 110 W/m2 depending on the temperature of the solar devices.en
dc.description.sponsorshipCristina Pinto gratefully acknowledges the Department of University, Innovation and Digital Transformation of the Government of Navarra for the grants for hiring doctoral students and doctoral students by companies, research centres and technology centres: Industrial Doctorates 2020, with file number 0011-1408-2020-000003 , received to carry out this work.en
dc.format.extent9 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.optmat.2021.111511
dc.identifier.issn0925-3467
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41485
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofOptical Materials, 121en
dc.relation.publisherversionhttp://doi.org/10.1016/j.optmat.2021.111511
dc.rights© 2021 The Authors. Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectRadiative coolingen
dc.subjectPhotonic crystalen
dc.subjectGlass surface texturizationen
dc.subjectThermal radiationen
dc.titleEnhanced thermal performance of photovoltaic panels based on glass surface texturizationen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3b717a79-0077-4723-bc96-50a948ac047f
relation.isAuthorOfPublicationa3ccb7e1-0363-490b-8fda-c883243ec14d
relation.isAuthorOfPublication5eab4a17-b7d4-43c9-b388-4cd49b64f0d1
relation.isAuthorOfPublication63669726-1ec2-4e33-8b4b-1332035f2b86
relation.isAuthorOfPublication.latestForDiscovery3b717a79-0077-4723-bc96-50a948ac047f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2021100076-Andueza_EnhancedThermal.pdf
Size:
3.5 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: