A fusion method for multi-valued data

dc.contributor.authorPapčo, Martin
dc.contributor.authorRodríguez Martínez, Iosu
dc.contributor.authorFumanal Idocin, Javier
dc.contributor.authorAltalhi, A. H.
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2021-09-14T08:33:11Z
dc.date.available2023-07-01T23:00:11Z
dc.date.issued2021
dc.description.abstractIn this paper we propose an extension of the notion of deviation-based aggregation function tailored to aggregate multidimensional data. Our objective is both to improve the results obtained by other methods that try to select the best aggregation function for a particular set of data, such as penalty functions, and to reduce the temporal complexity required by such approaches. We discuss how this notion can be defined and present three illustrative examples of the applicability of our new proposal in areas where temporal constraints can be strict, such as image processing, deep learning and decision making, obtaining favourable results in the process.en
dc.description.sponsorshipThe research done by Humberto Bustince, Iosu Rodríguez Martínez and Javier Fumanal Idocin has been funded by the project PID2019-108392GB-I00: 3031138640/AEI/10.13039/501100011033. The work of Martin Papčo was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0073.en
dc.embargo.lift2023-07-01
dc.embargo.terms2023-07-01
dc.format.extent30 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.inffus.2021.01.001
dc.identifier.issn1566-2535
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/40483
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofInformation Fusion, 71 (2021) 1-10en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.inffus.2021.01.001
dc.rights© 2021 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.1en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAggregation fusionen
dc.subjectModerate deviation functionen
dc.subjectMulti-valued data fusionen
dc.titleA fusion method for multi-valued dataen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication70c54ba9-626d-461e-aa8a-a3f99f35ba13
relation.isAuthorOfPublication5193d488-fd4e-4556-88ca-ba5116412a36
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery70c54ba9-626d-461e-aa8a-a3f99f35ba13

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2021020131_Papco_FusionMethod.pdf
Size:
856.92 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: