Mateda-2.0: estimation of distribution algorithms in MATLAB

dc.contributor.authorLarrañaga, Pedro
dc.contributor.authorSantana, Roberto
dc.contributor.authorBielza, Concha
dc.contributor.authorLozano, José Antonio
dc.contributor.authorEchegoyen Arruti, Carlos
dc.contributor.authorMendiburu, Alexander
dc.contributor.authorArmañanzas, Rubén
dc.contributor.authorShakya, Siddartha
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2025-01-24T11:27:50Z
dc.date.available2025-01-24T11:27:50Z
dc.date.issued2010-07-26
dc.date.updated2025-01-24T11:20:39Z
dc.description.abstractThis paper describes Mateda-2.0, a MATLAB package for estimation of distribution algorithms (EDAs). This package can be used to solve single and multi-objective discrete and continuous optimization problems using EDAs based on undirected and directed probabilistic graphical models. The implementation contains several methods commonly employed by EDAs. It is also conceived as an open package to allow users to incorporate different combinations of selection, learning, sampling, and local search procedures. Additionally, it includes methods to extract, process and visualize the structures learned by the probabilistic models. This way, it can unveil previously unknown information about the optimization problem domain. Mateda-2.0 also incorporates a module for creating and validating function models based on the probabilistic models learned by EDAs.en
dc.description.sponsorshipThis work has been partially supported by the Saiotek and Research Groups 2007-2012 (IT-242-07) programs (Basque Government), TIN2008-06815-C02-01, TIN2008-06815-C02-02, TIN2007-62626 and Consolider Ingenio 2010 - CSD2007-00018 projects (Spanish Ministry of Science and Innovation), the CajalBlueBrain project, and the COMBIOMED network in computational biomedicine (Carlos III Health Institute).
dc.format.mimetypeapplication/pdfen
dc.format.mimetypeapplication/zipen
dc.identifier.citationSantana, R., Bielza, C., Larrañaga, P., Lozano, J. A., Echegoyen, C., Mendiburu, A., Armañanzas, R., Shakya, S. (2010) Mateda-2.0: estimation of distribution algorithms in MATLAB. Journal of Statistical Software, 35(7), 1-30. https://doi.org/10.18637/jss.v035.i07
dc.identifier.doi10.18637/jss.v035.i07
dc.identifier.issn1548-7660
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/53085
dc.language.isoeng
dc.publisherFoundation for Open Access Statistics
dc.relation.ispartofJournal of Statistical Software, 35(7), 1-30
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//TIN2008-06815-C02-01/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//TIN2008-06815-C02-02/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//TIN2007-62626/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/
dc.relation.publisherversionhttps://doi.org/10.18637/jss.v035.i07
dc.rightsJSS has chosen to apply the Creative Commons Attribution License (CCAL) to all articles. Unported License Code: GNU General Public License (at least one of version 2 or version 3).
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEstimation of distribution algorithmsen
dc.subjectProbabilistic modelsen
dc.subjectStatistical learningen
dc.subjectOptimizationen
dc.subjectMATLABen
dc.titleMateda-2.0: estimation of distribution algorithms in MATLABen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationcb45e960-5f19-491c-ba50-555e4ce5f169
relation.isAuthorOfPublication.latestForDiscoverycb45e960-5f19-491c-ba50-555e4ce5f169

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Santana_Mateda.pdf
Size:
866.91 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Mateda_SupplementaryData.7z
Size:
1.22 MB
Format:
ZIP
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: